

(no reflection)

$$\sigma_p(watts) = \sqrt{n_s \sigma_n^2} hf/\tau$$
(number of states)
in cavity in B τ

Calculation of the number of electromagnetic modes = m: Recall, for hf << kT, kT W Hz⁻¹ • mode⁻¹ $\Rightarrow \frac{2kT}{\lambda^2}$ W Hz⁻¹m⁻²ster⁻¹ Therefore $\frac{2kT}{\lambda^2} / kT = \frac{2}{\lambda^2} = 2(f/c)^2 \left(\frac{modes}{m^2 \cdot ster}\right) \neq f(T)$ Therefore $m = 2(f/c)^2 A\Omega$ propagation modes

Lec 09.6- 1 1/11/01

Therefore
$$m = 2(f/c)^2 A\Omega$$
 modes

$$\sigma_p(watts) = \sqrt{n_s \sigma_n^2} hf/\tau$$

Each mode has $2B\tau$ degrees of freedom (2B samples sec⁻¹ times τ sec) (Nyquist sampling)

Each energy state ($\epsilon = hf$) has 2 degrees of freedom (sin ωt , cos ωt)

Therefore number of states n_s @ hf in $B\tau$: $n_s = (\# \text{ modes in } A\Omega) \bullet \left(\frac{\text{degrees}}{\text{mode}}\right) \bullet \left(\frac{\text{states}}{\text{degree}}\right)$ $= (m)(2B\tau)(1/2) = 2(f/c)^2 A\Omega(2B\tau)(1/2)$

$$\begin{split} \sigma_p &= \sqrt{n_s \sigma_n^2} \, hf/\tau \qquad n_s = 2(f/c)^2 \, A\Omega B\tau \qquad \sigma_n^2 = \overline{n} + \overline{n}^2 \\ \hline photons/state = \overline{n} = \frac{1}{e^{hf/kT} - 1} \end{split}$$

Therefore
$$\sigma_p = \sqrt{2\left(\frac{f}{c}\right)^2} A\Omega B\tau \left(\overline{n} + \overline{n}^2\right) (hf)^2 / \tau^2$$
 W "quantum limit"

If boxcar h(t) has $\tau = 0.5$ sec, $\equiv 1$ -Hz post-detection bandwidth, yields units of W Hz^{-1/2} (NEP_R)

$$NEP_{R}(f) = \sqrt{4A\Omega\left(\frac{f}{c}\right)^{2}B\left(\overline{n}+\overline{n}^{2}\right)(hf)^{2}} W Hz^{-1/2}$$

"Noise-equivalent power" due to radiation noise

Lec 09.6- 3 1/11/01

$$NEP_{R}(f) = \sqrt{4A\Omega\left(\frac{f}{c}\right)^{2}B\left(\bar{n}+\bar{n}^{2}\right)(hf)^{2}} W Hz^{-1/2}$$

"Noise-equivalent power" due to radiation noise

 NEP_R for a blackbody, all frequencies $(B \rightarrow \infty)$

$$\mathsf{NEP}_{R^{\infty}} = \left[4A\Omega \int_{0}^{\infty} (hf^{2}/c)^{2} (\overline{n} + \overline{n}^{2}) df \right]^{1/2} \text{ where } \overline{n}(f) = \frac{1}{e^{hf/kT} - 1}$$

$$\mathsf{NEP}_{\mathsf{R}^{\infty}} = \left[4\mathsf{A}\Omega(4\mathsf{k}\mathsf{T})\frac{\sigma_{\mathsf{S}\mathsf{B}}}{\pi}\mathsf{T}^{\mathsf{4}} \right]^{1/2} \left[\mathsf{W}\mathsf{H}\mathsf{z}^{-1/2} \right]$$

Where $\sigma_{SB} \equiv$ "Stefan-Boltzmann constant" = 5.67 × 10⁻⁸ Wm⁻²K⁻⁴ and Hz⁻¹ refers to the detector output bandwidth

Lec 09.6- 4 1/11/01

$$\mathsf{NEP}_{\mathsf{R}^{\infty}} = \left[4\mathsf{A}\Omega(4\mathsf{k}\mathsf{T})\frac{\sigma_{\mathsf{S}\mathsf{B}}}{\pi}\mathsf{T}^{\mathsf{4}} \right]^{1/2}\mathsf{W}\mathsf{H}\mathsf{z}^{-1/2}$$

Where $\sigma_{SB} \equiv$ "Stefan-Boltzmann constant" = 5.67 × 10⁻⁸ Wm⁻²K⁻⁴

Recall: blackbodies radiate $P_r = A\Omega \frac{\sigma_{SB}}{T} T^4$ watts (small Ω), $P_r = A\sigma_{SB} T^4$ if $\Omega = 2\pi$ $NEP_{R\infty} = [P_r 16kT]^{1/2} WHz^{-1/2}$ for $\Omega = 2\pi$ Therefore: Therefore minimize T,A $NEP_{R\infty} = 4\sqrt{A\sigma_{SB}kT^5}$ $\simeq 4 \times 10^{-16} \text{WHz}^{-1/2}$ $\Omega = 4\pi$ for $A = 10^{-6}$, $T = 4^{\circ}$ K

L5

Bolometer noise analysis

R, R_b produce Johnson noise
Radiated photons have shot noise, i.e. "radiation noise"
"Phonon noise" arises from shot noise in phonons carrying heat to the cold bath

$$NEP = \sqrt{4kT_bR/S^2} + 16A\Omega kT^5 \sigma_{SB}/\pi + 4kG_tT_b^2 (W Hz^{-1/2})$$
Johnson noise Photon shot noise Phonon shot noise

Optical Superheterodynes

Optical Superheterodyne CNR

$$\begin{split} v_{\mathsf{m}}(t) &= \text{constant} \bullet \eta \left(\sqrt{2S_0} \cos \omega_{\mathsf{S}} t \right)^2 \quad (\text{volts}) \\ &= \text{constant} \left[\eta \left(\mathsf{S} + \mathsf{P} + \sqrt{\mathsf{SP}} \cos \omega_{\mathsf{i},\mathsf{f}} . t \right) + \mathsf{D} \right] \text{where } \omega_{\mathsf{i},\mathsf{f}} . = \left| \omega_{\mathsf{S}} - \omega_{\mathsf{O}} \right| \\ &\quad \text{We want } \mathsf{P} >> \mathsf{S}, \eta \sqrt{\mathsf{SP}} >> \mathsf{D} \end{split}$$

Let "constant" $\stackrel{\Delta}{=}$ 1 so $v_m(t)$ units are counts/sec $v_{mix}(t) \cong v_m[signal] + v_m[noise]$

$$\begin{split} v_{\mathsf{m}}[\text{signal}] &\cong \eta \sqrt{\mathsf{SP}} \cos \omega_{\text{i.f.}} t & \text{Conveys information in S(t)}, \omega_{\text{i.f.}} \\ v_{\mathsf{m}}[\text{rms noise}] &\cong \sqrt{2\eta \mathsf{P}} \bigg(\frac{\text{counts/sec}}{\sqrt{\mathsf{Hz}}} \bigg) \bigg[= \sqrt{\frac{\eta \mathsf{P}}{\tau}}, \ \tau = 0.5 \ \text{sec for } \sqrt{\mathsf{Hz}} \bigg] \\ & \left(\cong \sqrt{2\mathsf{D}} \ \text{if } \ \mathsf{D} >> \eta \mathsf{P} \right) \\ \hline \overline{v}_{\mathsf{O}} &= \eta^2 \mathsf{SP} \Big\langle \cos^2 \omega_{\text{i.f.}} t \Big\rangle \quad \text{Conveys information in s(t) for } \ \omega \approx \frac{2\pi}{\tau} << \omega_{\text{i.f.}} \end{split}$$

Lec 09.6- 8 1/11/01

Optical Superheterodyne CNR

Let "constant" $\stackrel{\Delta}{=}$ 1 so $v_m(t)$ units are counts/sec $v_{mix}(t) \cong v_m[signal] + v_m[noise]$

 $CNR \approx \eta S\tau/4$

 $v_m[signal] \cong \eta \sqrt{SP} \cos \omega_{i.f.} t$ Conveys information in S(t), $\omega_{i.f.}$ v_{m} [rms noise] $\cong \sqrt{2\eta P} \left(\frac{\text{counts/sec}}{\sqrt{Hz}} \right) = \sqrt{\frac{\eta P}{\tau}}, \ \tau = 0.5 \text{ sec for } \sqrt{Hz}$ $(\cong \sqrt{2D} \text{ if } D >> \eta P)$ $\overline{v}_{o} = \eta^{2} SP \left\langle \cos^{2} \omega_{i.f.} t \right\rangle$ Conveys information in s(t) for $\omega \approx \frac{2\pi}{\tau} \ll \omega_{i.f.}$ $v_{o_{rms noise}} = \left(\sqrt{2\eta PB}\right)^2 / \sqrt{B\tau}$ for P >> S, P >> D Define CNR "Carrier-to-Noise Ratio" for $v_m(t) = \eta^2 SP / [4\eta PB / \sqrt{B\tau}] = \eta S \sqrt{\tau/16B}$ We assume $\tau > 1/B$ so τ provides additional noise smoothing

(best we could do is $CNR \le 1$ for 4 photons/bit)

Optical Superheterodynes, Comparisons

Therefore " T_R " = 4hf/kη if CNR (radio) = CNR (optical) This is 4 times radio quantum limit if i.f. noise etc. is negligible

(Note: $P_A \neq kT_AB$ in optical) Thus optical superheterodynes can approach quantum limit

Optical Superheterodynes, Comparisons

2) Optical non-superheterodyne if D >> S; then

 $v_{o_{sig}} = \eta S \text{ (gain normalized)}$ $v_{o_{noise}} = \sqrt{2DB} / \sqrt{B\tau}$

 $CNR = \eta S \sqrt{\tau/2D}$ versus $CNR_{S.H.} = \eta S \sqrt{\tau/16B}$

Therefore a superheterodyne is better if B_{i.f.} < D/8 i.e. the worse D is, the higher B can be before L.O. shot noise dominates (assuming no mixer or i.f. excess noise)

Antennas

Basic Characterization Professor David H. Staelin

Lec 09.6- 12 1/11/01

Uses of Antennas

Antennas couple electromagnetic radiation and transmission lines for transmission and reception

We have studied:
$$hf \ll kT$$
 Radio
 $hf \gg kT$ Optical
 $hf \approx kT$ IR
All bands use antennas

Antennas – Characterization

Antenna Example

MIT "Haystack" antenna @ $\lambda = 1$ CM; G_o \cong 73 dB Assume it radiates 1–MWatt radar pulses

Assume kTB \cong 1.4 \times 10⁻²³ \times 10°K \times 1Hz \cong 10⁻²² Watts(say T_R \cong 10° and we use 1–Hz CW radar)

Then P(Wm⁻²) received on Antares is comparable to receiver noise power kTB

Receiving Properties of Antennas

Characterized by Effective Area A(f, θ , ϕ):

Power spectral density received:

$$P_{r}(f) = \underbrace{A(f, \theta, \phi)}_{[m^{2}]} \bullet \underbrace{\left[I(f, \theta, \phi) \bullet \Delta\Omega\right]}_{\text{"flux density"}\left[S(Wm^{-2}Hz^{-1})\right]}$$

 Δf , $\Delta \Omega$ are source bandwidth, solid angle

Recall: Radiation intensity $I(f,\theta,\phi)$ received from blackbody at temperature T is:

$$(f,\theta,\phi) = \frac{2kT}{\lambda^2} \left[Wm^{-2}Hz^{-1}ster^{-1} \right]$$

Lec 09.6- 16 1/11/01

Receiving System Example Recall – 1-MW radar on Antares \Rightarrow 10⁻²¹ W/m² on earth (G_T = 7<u>3 dB</u>) $R = 3 \times 10^{16} \text{ m}$ Radio Earth Antares Received power = $A(f, \theta, \phi) \bullet [I(f, \theta, \phi)d\Omega] \bullet B = 10^{-17} W$ from Antares $\begin{array}{c} A(1,0,\psi) \\ say 10^{4}m^{2} \\ 10^{-21}Wm^{-2}Hz^{-1} \end{array}$

Suppose kTB = 10^{-22} W (recall above) then SNR = 10^{5} Audio at 10^{4} Hz \Rightarrow SNR = 10 (commercial opportunity?)

Relation Between A(f, θ , ϕ) and G(f, θ , ϕ)

We later prove (using reciprocity) that $\frac{G(\theta, \phi)}{G_0} = \frac{A(\theta, \phi)}{A_0}$

Receiving Properties Deduced from Reciprocity and Thermodynamics

Lec 09.6- 19 1/11/0

Receiving Properties Deduced from Reciprocity and Thermodynamics

Antenna radiates P(f, θ , ϕ) [W Hz⁻¹ ster⁻¹] into d Ω , so power out = P(f, θ , ϕ) d Ω df = (kTdf/4 π) Gd Ω (watts)

Antenna receives from $d\Omega$:

power in =
$$\frac{1}{2} \frac{2kT_B(\theta, \phi)}{\lambda^2} df d\Omega A(f, \theta, \phi)$$
[watts]
polarization Wm⁻²Hz⁻¹ster⁻¹

In thermal equilibrium $T = T_B(f, \theta, \phi)$; then equating radiation and reception (detailed balance) yields

$$G(f,\theta,\phi) = \frac{4\pi}{\lambda^2} A(f,\theta,\phi)$$

This assumes hf << kT and that powers superimpose, i.e., that the $T_B(\theta_1, \phi_1)$ signal $\overline{E}(t)$ is uncorrelated with that for $T_B(\theta_2, \phi_2)$

Antennas Used to Provide a Radio Link

Note: $P_r \rightarrow \infty$ as $r \rightarrow 0!$, so this relation requires r > r minimum

Let $P_r = P_t$ at r_{min} and $A_t = A_r = D^2$ (m²) [D \cong aperture diameter in practice]

Then
$$\frac{G_t A_r}{4\pi r^2 min} = 1 = \frac{A_t A_r}{\lambda^2 r^2 min} = \frac{D^4}{\lambda^2 r^2 min}$$

Therefore $r_{min} = D^2 / \lambda \left(\text{ in practice we want } r > 2D^2 / \lambda \right)$

This zone where $r \approx 2D^2/\lambda$ is called the "far field" of the aperture

Lec 09.6-21 1/11/01

Definition of Antenna Temperature $T_A(^{\circ}K)$

$$kT_{A}(W Hz^{-1}) = \int_{4\pi} \underbrace{A(\theta, \phi)}_{(\theta, \phi)} I(\theta, \phi) d\Omega$$

for a specific polarization

Received power spectral density

Since I = $\frac{2kT_B}{\lambda^2} \cdot \frac{1}{2}$ for thermal radiation, single polarization

Therefore

$$T_{A} = \frac{1}{\lambda^{2}} \int A(\theta, \phi) T_{B}(\theta, \phi) d\Omega$$
$$= \frac{1}{4\pi} \int G(\theta, \phi) T_{B}(\theta, \phi) d\Omega$$

For T_B uncorrelated in angle

Observing Small Thermal Sources $T_B(\theta,\phi,f)$

Ways to Characterize Small Thermal Sources

Limiting case:

$$T_{A_{S}} = \frac{1}{4\pi} \int_{\Omega_{S}} G(\theta, \phi) T_{B}(\theta, \phi) d\Omega = \frac{G_{o} T_{B} \Omega_{S}}{4\pi} = \frac{A_{o} T_{B} \Omega_{S}}{\lambda^{2}}$$

1. $T_B(\theta, \phi, f)$ (for each of 2 polarizations)

- 2. \overline{T}_{B_S} average brightness temperature
- 3. $S(f)[Wm^{-2}Hz^{-1}] = \int_{\Omega_S} I(f,\theta,\phi) d\Omega \neq f(antennas)$ if source small, $\Omega_S \ll \Omega_A$

Units of S: 1" jansky" =
$$10^{-26}$$
 Wm⁻²Hz⁻¹