Wire Antennas: Maxwell's equations

Maxwell's equations govern radiation variables:
E electric field $\left(\mathrm{vm}^{-1}\right)$
$\overline{\mathrm{H}}$ magnetic field $\left(\mathrm{am}^{-1}\right)$
$\mathrm{D}=\varepsilon$ E electric displacement (Coulombs m^{-2})
$\overline{\mathrm{B}}=\mu \mathrm{H}$ magnetic flux density (Teslas)
(ε is permittivity; $\varepsilon_{0}=8.8542 \times 10^{-12}$ farads $/ \mathrm{m}$ for vacuum)
(μ is permeability; $\mu_{0}=4 \pi \bullet 10^{-7}$ henries $/ \mathrm{m}$)
(1 Tesla $=1$ Weber $\mathrm{m}^{-2}=10^{4}$ gauss)

Maxwell's Equations: Dynamics and Statics

Maxwell's equations

$$
\begin{array}{lll}
\nabla \times \overline{\mathrm{E}}=-\frac{\partial \mathrm{B}}{\partial \mathrm{t}} & \rightarrow & =0 \\
\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}} & \rightarrow & =\overline{\mathrm{J}}\left(\mathrm{am}^{-2}\right) \\
\nabla \cdot \overline{\mathrm{D}}=\rho & \rightarrow & =\rho\left(\mathrm{C} \mathrm{~m}^{-3}\right) \\
\nabla \cdot \overline{\mathrm{B}}=0 & \rightarrow & =0 \\
\left(\nabla \Delta \hat{x} \partial / \partial \mathrm{x}+\hat{\mathrm{y}} \partial / \partial \mathrm{y}+\hat{\mathrm{z}} \partial / \partial \mathrm{z} ; \nabla \Delta \hat{\mathrm{r}} \frac{\partial}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\phi} \frac{1}{\mathrm{r} \sin \theta} \frac{\partial}{\partial \phi}\right)
\end{array}
$$

Statics

Static Solutions to Maxwell's Equations

Maxwell's equations govern variables: \bar{E} electric field $\left(\mathrm{vm}^{-1}\right)$
$\overline{\mathrm{H}}$ magnetic field $\left(\mathrm{am}^{-1}\right)$

$$
\mathrm{E}=-\nabla \phi \text { since } \nabla \times \mathrm{E}=0
$$

$\overline{\mathrm{B}}=\nabla \times \overline{\mathrm{A}}$ since $\nabla \bullet \overline{\mathrm{B}}=0$
$\phi_{\mathrm{p}}=\frac{1}{4 \pi \varepsilon} \int_{\mathrm{v}_{\mathrm{q}}} \frac{\rho_{\mathrm{q}}}{\mathrm{r}_{\mathrm{pq}}} \mathrm{dv} \mathrm{v}_{\mathrm{q}}$ volts is electrostatic potential at point p
$\bar{A}_{p}=\frac{\mu}{4 \pi} \int_{v_{q}} \frac{J_{q}}{r_{p q}} d v_{q}$ is the vector potential at p

Dynamic Solutions to Maxwell's Equations

$\overline{\mathrm{B}}=\nabla \times \overline{\mathrm{A}}$ since $\nabla \bullet \overline{\mathrm{B}}=0$

$$
\begin{aligned}
\bar{A}_{\mathrm{p}}(\mathrm{t}) & =\frac{\mu}{4 \pi} \int_{\mathrm{v}_{\mathrm{q}}} \frac{\overline{\mathrm{~J}}_{\mathrm{q}}\left(\mathrm{t}-\mathrm{r}_{\mathrm{pq}} / \mathrm{c}\right)}{r_{\mathrm{pq}}} \mathrm{dv}_{\mathrm{q}} \quad \text { (static solution, delayed) } \\
\mathrm{c} & =1 / \sqrt{\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}} \cong 3 \times 10^{8} \mathrm{~ms}^{-1} \text { (velocity of light) }
\end{aligned}
$$

$$
\text { Sinusoidal steady state: } \bar{A} p=\frac{\mu}{4 \pi} \int_{v_{q}} \frac{\bar{\jmath}_{q} e^{-j k r_{p q}}}{r_{p q}} d_{v_{q}}
$$

where propagation constant $\mathrm{k}=\omega \sqrt{\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}}=\omega / \mathrm{c}=2 \pi / \lambda$

Solution method: $\overline{\mathrm{J}}_{\mathrm{q}}(\overline{\mathrm{r}}) \rightarrow \overline{\mathrm{A}}(\overline{\mathrm{r}}) \rightarrow \overline{\mathrm{B}}(\overline{\mathrm{r}}) \rightarrow \overline{\mathrm{E}}(\overline{\mathrm{r}})$
where $\overline{\underline{E}}=-(\nabla \times \underline{\bar{H}}) / \mathrm{j} \omega \varepsilon$ from Faraday's law

Elementary Dipole Antenna (Hertzian Dipole)

Far field: $r \gg \lambda / 2 \pi, \quad \bar{E} \cong \hat{\theta} j_{\eta_{0}} \frac{k l_{0} d \sin \theta}{4 \pi r} e^{-j k r}$
where $k=2 \pi / \lambda, \eta_{0} \equiv \sqrt{\mu_{0} / \varepsilon_{0}}=377 \Omega$
characteristic impedance of free space

$$
\mathrm{H} \cong \hat{\phi} \frac{k l_{0} d \sin \theta}{4 \pi j r} e^{-j k r}
$$

Elementary Dipole Antenna (Continued)

$\overline{\mathrm{S}} \underline{\underline{\Delta}} \overline{\underline{E}} \times \overline{\mathrm{H}}^{*} \mathrm{~W} \mathrm{~m}^{-2}$ "Poynting vector"
where average power density $=\langle\overline{\mathrm{S}}(\mathrm{t})\rangle=\frac{1}{2} \operatorname{Re}\{\overline{\mathrm{~S}}\}\left(\mathrm{Wm}^{-2}\right)$
and $\bar{S}(t)=E(t) \times H(t)\left(\mathrm{w} \mathrm{m}^{-2}\right)$

Elementary Dipole Antenna (Continued)

$\mathrm{S} \triangle \mathrm{E} \times \mathrm{H}^{*} \mathrm{~W} \mathrm{~m}^{-2}$ "Poynting vector"
where average power density $=\langle\bar{S}(t)\rangle=\frac{1}{2} \operatorname{Re}\{\bar{S}\}\left(\mathrm{w} \mathrm{m}^{-2}\right)$ and $\mathrm{S}(\mathrm{t})=\mathrm{E}(\mathrm{t}) \times \mathrm{H}(\mathrm{t})\left(\mathrm{w} \mathrm{m}^{-2}\right)$
$\langle\mathrm{S}(\mathrm{t})\rangle=\hat{\mathrm{r}} \frac{\eta_{0}}{2} \int_{2 \lambda} \frac{\mathrm{l}^{\mathrm{d}} \operatorname{din} \theta^{2}}{2 \lambda r}$ for a short dipole

Total power transmitted

$$
\mathrm{P}_{\mathrm{t}}=\frac{1}{2} \mathrm{R}_{\mathrm{e}}\left\{\int_{4 \pi} \overline{\mathrm{~S}} \bullet \hat{\mathrm{r}} \mathrm{~d} \Omega\right\}=\left.\frac{\pi}{3} \eta \frac{\mathrm{l}}{\frac{\mathrm{l}}{}} \frac{\mathrm{~d}^{2}}{\lambda}\right|^{2} \text { Watts }
$$

Equivalent Circuit for Short Dipole Antenna

$$
\begin{gathered}
I_{0} \rightarrow R_{\text {Reactance }}^{\text {V }}=\begin{array}{l}
\text { Reactance is capacitive } \\
\text { for a short dipole antenna } \\
\text { and inductive for a small } \\
\text { loop antenna }
\end{array} \\
\text { resistance" }
\end{gathered}
$$

$$
\mathrm{R}_{\mathrm{r}}=\frac{2 \pi}{3} \eta_{\mathrm{o}}\left(\mathrm{~d}_{\mathrm{eff}} / \lambda\right)^{2} \text { ohms for a short dipole antenna }
$$

Example: $\lambda=300 \mathrm{~m}(1 \mathrm{MHz}), \mathrm{d}_{\text {eff }}=1 \mathrm{~m} \Rightarrow \mathrm{R}_{\mathrm{r}} \cong 0.01 \Omega$
such a mismatch requires transformers or hi-Q resonators for a good coupling to receivers or transmitters

Wire Antennas of Arbitrary Shape

Finding self-consistent solution is difficult (matches all boundary conditions)
Approximate solutions are often adequate

Approach

1) Use TEM - line reasoning to guess! ($\bar{r})$
2) ! $(\bar{r}) \rightarrow \overline{\mathrm{A}}_{\text {farfield }} \rightarrow \overline{\mathrm{H}}_{\text {ff }} \rightarrow \overline{\mathrm{E}}_{\text {ff }}$
3) $\mathrm{E}_{\mathrm{ff}} \cong \frac{\mathrm{jk} \eta}{4 \pi r} \int \hat{\mathrm{~L}}$ (() $\mathrm{I}(\ell) \mathrm{e}^{-\mathrm{jkr}(\ell)} \sin \theta(\ell) \mathrm{d} \ell$

Estimating Current Distribution !($($)

 on Wire Antennas

Most energy stored within 1-2 wire radii.

Therefore V, I on thin wires is TEM - like

Examples: Current Distributions and Patterns

"Half-wave dipole"

$R_{\mathrm{r}} \cong 73 \Omega, j \mathrm{X}=0$
"Full-wave antenna"

$$
\overline{\mathrm{E}}_{\mathrm{ff}} \cong \hat{=} \hat{\theta} \frac{\mathrm{j} \mathrm{l}_{0} \mathrm{e}^{-\mathrm{jkr}}}{2 \pi r \sin \theta} \underbrace{\left[\cos \left(\frac{\mathrm{k} \ell}{2} \cos \theta\right)-\cos \frac{\mathrm{k} \ell}{2}\right]}_{=\cos \left(\frac{\pi}{2} \cos \theta\right) \mathrm{if} \ell=\frac{\lambda}{2}}
$$

for center-fed wire of length ℓ

Examples: Current Distributions and Patterns

Long-wire antenna

Vee (broadband)

Mirrors, Image Charges and Currents

We can replace planar mirrors $(\sigma=\infty)$ with image charges and currents; $\overline{\mathrm{E}}, \overline{\mathrm{H}}$ solution unchanged.

Image current
Note: Anti-symmetry of image charges and currents guarantees $\overline{\mathrm{E}} \perp(\sigma=\infty)$,
$H / /(\sigma=\infty)$, matching boundary conditions. Also, the uniqueness theorem says any solution is the valid one.

Antenna pattern

Antenna Arrays

N identically oriented antenna elements

$$
\bar{E}_{p} \cong \underbrace{\substack{\text { at } \\ \\ x=y=z=0}}_{\text {from l }}{ }^{\bar{E}(\theta, \phi) e^{j} \varphi_{o}} \sum_{i=1}^{N} A_{j} e^{-j \varphi_{i}(\theta, \phi)}
$$

$$
\mathrm{G}(\theta, \phi) \propto \left\lvert\, \overline{\mathbf{E}}^{2}=\underbrace{\overline{\mathrm{E}}_{0}\{\theta, \phi\}^{2}}_{\begin{array}{c}
\text { element } \\
\text { factor }
\end{array}} \cdot \underbrace{\left.\sum_{i} \mathrm{~A}_{\mathrm{i}} \mathrm{e}^{-\mathrm{j} \varphi_{i}(\theta, \phi)}\right|^{2}}_{\text {array factor }}\right.
$$

Examples of Antenna Arrays

Full-wavelength antenna:

Linear array:

Let $\varphi_{i}=\alpha_{i}+\frac{2 \pi}{\lambda} z_{i} \cos \theta=0$ at $z=0$;
α_{i} is phase of ith element current

Linear Array Example: Half-Wave Dipole Plus Reflector

Linear Array Example: Jansky Antenna

Used in 1927 to discover galactic radiation at 27 MHz while seeking radio interference on AT\&T transatlantic radio telephone circuits.

To cancel y-direction lobes, drive two duplicate antennas in phase, $\lambda / 2$ apart in y -direction \Rightarrow

Genetic Algorithms for Designing Wire Antennas

1. Need performance metric, e.g. target gain or pattern plus cost function.
2. Need software tool to compute that metric for wire antennas.
3. Need vector description to represent each possible antenna.
4. Need genetric algorithm to randomly vary vector so its metric can be computed. The algorithm hill-climbs efficiently toward optimum design, especially if the antenna is not too reactive.
Yields rats-nest configurations that perform well.
e.g.

Ground plane
5. Metrics and vector descriptions favoring simplicity bias the design accordingly.

