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Receiving Properties of Antennas 
Open-circuit voltage of short dipole antennas 

For d << λ, quasistatic limit 
Note that equipotentials (a) and (b) intercept the dipole at the 
midpoints for rwire → 0, and are perpendicular. 
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(b) 
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Equivalent circuit for short dipole antennas 
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Available power from a short dipole antenna 
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f tt 
== 

(Reference: Electromagnetic Waves, Staelin, Morgenthaler, and Kong, p. 459) 

Impedance matrix for imbedded N-port 

SZV ↔=N-port 
1I 

1v 

2I 

nv 

2v 

nI 

+ -

+-

+ 
-

σε= 
ttt , 

[Excludes ferrites, magnetized plasmas, etc.] 

(Reference: Op. Cit., p.454) 
L4 

Proof that A = Gλ2/4π for all reciprocal antennas 

matrix) g (scatterin S S , Z Z : applies y reciprocit I

  where , IZ 

σ = ε = , u u if applies y Reciprocit 



Proof that A = Gλ2/4π for all reciprocal antennas 
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Power received by antennas 1 and 2: 
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Proof that A = Gλ2/4π for all reciprocal antennas 
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Power received by antennas 1 and 2: 
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Example: Aeff for short dipole 

( )eff 

222 

3 
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GA ≠⎟

⎠ 
⎞

⎜
⎝ 
⎛ λ 

= 
π 
λ

≤
π 
λ 

= 

max 
if matched≤ 3/2 

e.g. λ = 300 m @ 1 MHz, yet d ≅ 1 m on car 
→ λ ≅  30 cm, d ≅ 15 cm 

λ/3 

λ/3 

L7 

Rr 

VTh 

Ceq 

+ -

eff can be much larger than physical antenna when 
the load is roughly impedance matched, but this match 
may provide excessively narrow bandwidth eqr≅ω∆ 

d f 

e.g. cell phone @ 900 MHz 

Note: A

C R 1 



Multi-conductor wire antennas 

Short dipoles scatter. 
How much? 

Short 
circuitπ 
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Multi-conductor wire antennas 
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Scattering from a half-wave dipole 
Rr ≅ 73Ω, G ≤ 1.64, X ≅ 0 because We ≅ Wm 
Most EM energy (WT = We + Wm ≅ 2Wm) is stored 
within a few wire radii 

o T  
d 

W 
P 

ω 
= 

rdo Pwhere ≡λπ=ω 

∆ω 

ωo 
ω0 

2I 

Sinc 

Orbiting λ/2 needles 
for passive satellite 
communications link 
(artificial ionosphere) 

N3 

Resonance Q 10 =  ω  ∆ω  ≅  

P , c 2 



Scattering from parasitic antenna elements 

λ/4 
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λ/2 

image current 
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pattern 

~λ/2, resonant 

λ/4 

radiatorreflector 

λ/2 

4/ ~ λ≤ 
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Phase control in isolated wires 

L 
R 

C 

f Hz 
+ 

-

i(t) 

s = jω here LC1o =ω 

( ) zjLsV φ=++== 

Control phase φ in wire by: 
reducing ωo → 0° < φ < 90° (lengthen wire) 
increasing ωo → -90° < φ < 0° (shortening wire) 

Increase Q and ∂φ/∂ω by increasing WT (thinning the wire) 
N5 

∆ω ωo 

π/2 

-π/2 

0 
ω ~100° 

( ) ooo forjXRZ ω≅ωω−ω+≅ 

ω∆ 
ω 

= oQ 

φz 

e Z I Cs 1 R I ZI 



Directivity of parasitic wire antennas 

λ/2 

1I 2I 

∆ << λ/2π 

short circuit λ/4 away, so and radiated fields cancel12 II −≅ 

open circuit 

Directors: 

D 
d1I 

PB 

1I 

PF 

If d ≠ λ/2, then φ ≠  0 
If D,φ ∋  PB ≅ 0 and PF ≠ 0, then parasitic element is “director” 

( )2 
F WmP − 

Reflectors: 
1I 2IPB 

D “reflector” is parasitic resonant dipole
λ/2 long (note: reflects at all D) 

~reality 

λ/4 λ/2 λ D 

PF (forward power) 

0 

12 II = 

( ) 04DPB ≅λ= 

back 

N6 

forward 



Multiple parasitic wires, Yagi antenna 
Choice of di, Di, (i = 1, …N) originally was an art. Now 
computers can optimize chosen specifications (e.g. 
bandwidth, reactance, directivity) 

P1 

reflectors 
(length > λ/2) 

directors 
(length < λ/2) 

di 

Di 

driven element ≈ λ/2 
i = N 

pattern 

main beam 



Half-wave folded dipole antenna 
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TEM line( )
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Half-wave folded dipole antenna 
Cross-section of TEM “twin lead” line: 

“TEM” mode Common mode 
( )ε( )say5 oε≅ε 

Cu wire 

E E 

TEMcommonTEM 1cc λ>λµε≅< 

P3 

Therefore 

λ/2 for TEM mode 
to force IA = IB 

λ/2 for common mode 
to radiate 

less sees E 

mode common so , v and 



A Balun couples balanced to unbalanced systems 

Conductors C and D form λ/4 TEM line shorted at the mirror, 
yielding an open circuit at coax end, forcing current into B 

mirror 

λ/4 

e.g., this is okay Suppose we want: 

But current will flow down the 
outside of C instead of into B 

solder joint 
mirror 

C A 

B 
λ/4

coax 

oI 

mirror 
A 

B 

D 

Solution: 

P4 
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Helical antenna 

Waves add in phase in 
the forward direction if 

( ) λ=−+π ndd22 

If L >> D, standing wave at end is 
small because of radiation losses. 
Assume ~ TEM propagation 

hypotenuse 

2πr 
circumference 

d 

one 360° 
turn of wire 

( )114n 2 −+πλ== 
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D=2R 

L e.g. 
coax 

mirror 
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Helical antenna 
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I(t) 

≅ 

f-Hz dipole 
rotation 

)t(I 

Long helices have weaker standing waves (less current at end) 

I(t) 



Log-periodic antennas 

Too short to matter, has 
a reactive effect.

long elements 
not excited, 
due to 
radiation 
losses 

resonant at fo 

active part of antenna at fo(d ≅ λ/2) 
(moves with frequency) 

fo input 

Pattern, impedance 
≠ f(f) (approximately) 

P7 

Log spiral, radiates 
circular polarizationA 

B 


