## Receivers, Antennas, and Signals

Modulation and Coding<br>Professor David H. Staelin

## Multi-Phase-Shift Keying, "MPSK"

BPSK: Binary Phase-Shift Keying


## Error Probabilities for Binary Signaling



Source: Digital and Analog Communication Systems, L.W. Couch II, (4th Edition), Page 351

## Phasor Diagrams

$\mathrm{S}(\mathrm{t})=\mathrm{R}_{\mathrm{e}}\left\{\mathrm{S}^{\mathrm{j}} \mathrm{e}^{\mathrm{jot}}\right\}$
Im\{S\}
Equal-Noise




Rectangular

## Intersymbol Interference



## Performance Degradation Due to Interchannel Interfence



Closer channel spacing requires more signal power to maintain $P_{e}$ Recover by boosting signal power (works until $N_{o}$ becomes negligible)
(for a given $\mathrm{E} / \mathrm{N}_{0}$ )

## Error Reduction via Channel Coding

## Shannon's Channel Capacity Theorem

We want $P_{\mathrm{e}} \rightarrow 0$ (banking, etc.) $\Rightarrow E / N_{o} \rightarrow \infty$ using prior methods
Theorem: $P_{e} \rightarrow 0$ if channel capacity "C" not exceeded, in bits/sec

$$
\begin{aligned}
& \mathrm{C}=\mathrm{B}_{\mathrm{B}} \mathrm{LOG}_{2}(1+\underset{\mathrm{Hz}]}{\mathrm{S} / \mathrm{N}) \mathrm{bits} / \mathrm{sec}} \\
& \text { Noise Power }=\mathrm{N}_{\mathrm{o}} \mathrm{~B} \\
& \text { Average Signal Power }
\end{aligned}
$$

(Shannon showed "can," not "how")
Examples: $\mathrm{S} / \mathrm{N}=10$ yields $\mathrm{C}=3 \mathrm{~B}(3 \mathrm{bits} / \mathrm{Hz}), \mathrm{S} / \mathrm{N}=\underbrace{127}$ yields $\mathrm{C}=7 \mathrm{~B}$ (7 bits/Hz)

$$
\sim 21 \mathrm{~dB}
$$

e.g. 3-kHz phone at 9600 bps requires $\mathrm{S} / \mathrm{N} \simeq 10 \mathrm{~dB}$

## Channel Codes

## Definitions:

1. "Channel codes" reduce $\mathrm{P}_{\mathrm{e}}$
2. "Source codes" reduce redundancy
3. "Cryptographic" codes conceal

Solomon Golomb: A message with content and clarity has gotten to be quite a rarity; to combat the terror of serious error, use bits of appropriate parity.

Channel codes are our principal approach to letting $R \rightarrow C$ with acceptable $P_{e}$

## Coding Delays Message and Increases Bandwidth

Can show: $\mathrm{P}_{\mathrm{e}} \leq 2^{-\mathrm{Tk}(\mathrm{C}, \mathrm{R})}, \mathrm{T}=$ time delay in coding process
e.g. use $M=2^{R T}$ possible messages in $T$ sec. (RT = \#bits in T sec; "block coding") use $\mathrm{M}=2^{\mathrm{RT}}$ frequencies spaced at $\sim 1 / \mathrm{T} \mathrm{Hz}$ then $B=2^{R T} / T(\operatorname{can} \rightarrow \infty!)$

## Minimum $\mathrm{S} / \mathrm{N}_{\mathrm{o}}$ for $\mathrm{P}_{\mathrm{e}} \rightarrow 0$

Can show : $\mathrm{C}_{\infty} \triangleq \lim _{\mathrm{B} \rightarrow \infty} \mathrm{C}=\mathrm{S} /\left(\mathrm{N}_{\mathrm{o}} \ln 2\right) \geq \mathrm{R}_{\left(\mathrm{Pe}_{\mathrm{e}} \rightarrow 0\right)}$ bits/sec
Therefore

$$
\mathrm{S} / \mathrm{N}_{\mathrm{o}} \geq 0.69 \mathrm{R} \text { for } \mathrm{P}_{\mathrm{e}} \rightarrow 0 \text { as } \mathrm{B} \rightarrow \infty
$$

$\mathrm{P}_{\mathrm{e}}\{$ Bit Error $\}$


## Error Detection K + R Code

Blocks:


Simple parity check $-\underbrace{x x \underbrace{R} \ldots x}_{\text {K bits }} \underbrace{P}$ where $P \ni \Sigma 1$ bit $=\left\{\begin{array}{l}\text { even } \\ \text { or } \\ \text { odd }\end{array}\right.$ (2 standards) $K$ bits $\quad R=1$ bit
i.e. = A single bit error transforms its block to "illegal" message set (half are illegal here).

## Error Correction Code

$$
\text { Message }=m_{1} m_{2} \ldots m_{K} \quad \text { Checks }=m_{K+1} \ldots m_{K+R}
$$

Any of these $K+R$ bits can be erroneous

|  | Receive: <br> Correct: | $\hat{\mathrm{m}}_{1}$ | $\hat{\mathrm{~m}}_{2} \ldots \ldots \ldots \ldots \ldots \hat{\mathrm{~m}}_{\mathrm{K}+\mathrm{R}}$ |
| :---: | :--- | :--- | :--- |
| $\mathrm{m}_{1}$ | $\mathrm{~m}_{2} \ldots \ldots \ldots \ldots \ldots \mathrm{~m}_{\mathrm{K}+\mathrm{R}}$ |  |  |
| Sum (modulo 2) $=0$ 's if no error $\rightarrow 0$ | 0 | 0 |  |

Consider locations of "1"s in K + R slots of Sum
If we wish to detect and correct 0 or 1 bit error in the block of $K+R$ bits,
we need $\underbrace{K+R} \geq K+$ LOG $_{2}(\underbrace{K+R+1})$ bits/block
Original
Information


## Single-Bit Error Correction

If we wish to detect and correct 0 or 1 bit error in the block of $K+R$ bits, we need $\underbrace{K+R} \geq K+\mathrm{LOG}_{2}(\underbrace{K+R}+\underbrace{1})$ bits/block

Original
Information

\(\left.\begin{array}{l|ll}\mathrm{K}= \& \mathrm{R} \geq \& \mathrm{R} /(\mathrm{R}+\mathrm{K}) <br>
\hline 1 \& 2 \& 0.67 <br>
2 \& 3 \& 0.6 <br>
3 \& 3 \& 0.5 <br>
4 \& 3 \& 0.4 <br>

5 \& 4 \& 0.4\end{array}\right\}\) Not too \begin{tabular}{l}
efficient <br>
100 <br>
$10^{3}$ <br>
$10^{6}$

 

<br>
<br>
\end{tabular}

R = Check bits needed
to detect and fix $\leq 1$ error in a block of K + R

## Two-Bit Error Correction

If we wish to correct two errors:
We need $K+R \geq K+\operatorname{LOG}_{2}(1+\underbrace{1}_{\text {"No Error" 1 Error }}+\underbrace{K+R}_{2 \text { Errors }}+\underbrace{2}_{\text {(K+R)(K+R-1)}})$
Message

| $K=$ | $R \geq$ | $R /(R+K)$ |  |
| :--- | :--- | :--- | :--- |
| 5 | 7 | 0.6 | $R=$ Check bits needed |
| $10^{3}$ | $\sim 20$ | 0.02 |  | | to detect and fix $\leq 2$ errors |
| :--- |
| $10^{6}$ |

## Implementation: Single-Error Correction

Block $\triangleq\left[\begin{array}{lllllll}\mathrm{m}_{1} & \mathrm{~m}_{2} & \mathrm{~m}_{3} & \mathrm{~m}_{4} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3}\end{array}\right]$

$$
(K=4, R=3) \quad(4 \text { message bits, } 3 \text { check bits) }
$$

$$
\text { Let } \mathrm{C}_{1} \triangleq \mathrm{~m}_{1} \oplus \mathrm{~m}_{2} \oplus \mathrm{~m}_{3}
$$

$$
\mathrm{C}_{2} \stackrel{\Delta}{=} \mathrm{m}_{1} \oplus \mathrm{~m}_{2} \oplus \mathrm{~m}_{4} \quad \mathrm{C}_{3} \triangleq \mathrm{~m}_{1} \oplus \mathrm{~m}_{3} \oplus \mathrm{~m}_{4}
$$

| $\oplus$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
|  | 1 | 0 |

(Note: $\mathrm{C}_{1} \oplus \mathrm{C}_{1} \triangleq \mathrm{~m}_{1} \oplus \mathrm{~m}_{2} \oplus \mathrm{~m}_{3} \oplus \mathrm{C}_{1} \equiv 0$ )
"Sum, modulo-2"
Truth Table

$\overline{\mathrm{H}} \overline{\mathrm{Q}}=\overline{0}$ defines legal codewords $\overline{\mathrm{Q}}$

## Implementation: Single-Error Correction

## $\bar{H} \overline{\mathrm{Q}}=\overline{0}$ defines legal codewords $\overline{\mathrm{Q}}$

Only $1 / 8$ of all 7 -bit words are legal because $\mathrm{C}_{1}, \mathrm{C}_{2}$, and $\mathrm{C}_{3}$ are each correct only half the time and $(0.5)^{3}=1 / 8$ Suppose transmitted $\overline{\mathrm{Q}}$ is legal and received $\overline{\mathrm{R}}=\overline{\mathrm{Q}}+\overline{\mathrm{E}}$ then $\overline{\bar{H} \bar{R}}=\underbrace{\overline{\mathrm{H}} \overline{\mathrm{Q}}}+\underbrace{\overline{\mathrm{H}} \overline{\mathrm{E}}}$ $\equiv 0 \neq 0$ Interpret to yield error-free $\bar{Q}$ from $\frac{1}{R}$
Say $\overline{\mathrm{H}} \overline{\mathrm{R}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \Rightarrow$ Error in $\mathrm{m}_{3}\left(\right.$ Note that $\left.\mathrm{H}_{\mathrm{i} 3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)$
Can even rearrange transmitted word so:

$$
\left.\mathrm{L}=1 \begin{array}{ccccccc}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{C}_{3} \\
\mathrm{C}_{2} \\
\mathrm{~m}_{4} \\
\mathrm{C}_{1} \\
\mathrm{~m}_{3} \\
\mathrm{~m}_{2} \\
\mathrm{~m}_{1}
\end{array}\right]=\overline{\mathrm{E}}=\text { Binary representation } \begin{gathered}
\text { of error location " } \mathrm{L} \text { " }
\end{gathered}
$$

## $P_{\mathrm{e}}$ Benefits of Channel Coding

Suppose $P_{e}=10^{-5}$, then P\{error in 4-bit word\} $=1-\underbrace{\left(1-10^{-5}\right)^{4}}_{P\{\text { no errors }\}} \cong 4 \times 10^{-5}$
If we add 3 bits to block ( $4+3=7$ ) for single-error correction, and send it in the same time $\Rightarrow \frac{4}{7}$ less $\mathrm{E} / \mathrm{N}_{0}$ ( 2.4 dB loss)
$\mathrm{P}_{\mathrm{e}} \rightarrow 6 \times 10^{-4}$ (per bit; depends on modulation)
$\mathrm{p}\left\{2\right.$ errors in 7 bits $\left.@ 6 \times 10^{-4}\right\}=$ p\{no error $\}^{5} \cdot \underbrace{}_{\left.\text {- }^{-4}\right)^{\text {p }} \text { error }^{2}} \underbrace{\left(\begin{array}{l}7 \\ 2\end{array}\right]} \cong 8 \times 10^{-6}$

$$
\left(6 \times 10^{-4}\right)^{2} 7 \cdot 6 / 2!
$$

Compare new p\{block error\} $8 \times 10^{-6}$ to $4 \times 10^{-5}$ without coding
Coding reduced block errors by a factor of 5 with same transmitter power
Alternatively, reduce power and maintain $\mathrm{P}_{\mathrm{e}}$
Benefits depend on $P_{e}\left(E / N_{o}\right)$ relation

## Benefits of Soft Decisions

Soft decisions can yield $\sim 2 \mathrm{~dB}$ SNR improvement for same $\mathrm{P}_{\mathrm{e}}$


Example: Parity bit implies one of $n$ bits was received incorrectly. Choose the one bit for which the decision was least clear.

## Convolutional Codes



Constraint Length

Convolutional codes employ overlapping blocks (sliding window)

Example:
R (bits/sec)
3-bit shift register-


This is a "rate $1 / 2$, constraint-length- 3 convolutional coder"
One advantage: accommodates soft decisions
Here each message bit impacts 3 output bits and therefore impacts decoder decisions impacting 3 or more reconstructed bits, so soft decisions help identify erroneous bits.

## Receivers, Antennas, and Signals

Modulation and Coding<br>Professor David H. Staelin

## Rayleigh Fading Channels

e.g. Fading from deep vigorous multipath


Consider multipath with output signal $z(t)=\sum_{i=1}^{N} x_{i} \cos \omega t+y_{i} \sin \omega t$ (sum of N phasors, one per path)

$$
\underset{0}{\operatorname{Im}\{z\}}
$$

Rayleigh fading: $x_{i}$ and $y_{i}$ are independent g.r.v.z.m.



## Rayleigh Fading Channels

Rayleigh fading: $x_{i}$ and $y_{i}$ are independent g.r.v.z.m.



Variance of $\operatorname{Re}\{z\}, \operatorname{Im}\{\underline{z}\} \equiv \sigma^{2}$

$$
\begin{array}{ll}
\langle | z\rangle & =\sigma \sqrt{\pi / 2} \\
\left.\left.\langle | z\right|^{2}\right\rangle & =\sigma^{2}(2-\pi / 2) \\
\sqrt{(|z|-\langle | z| \rangle)^{2}} & \cong 2 \sigma / 3 \neq f(N) \\
P\left\{|z|>z_{0}\right\} & =e^{-\left(z_{0} / \sigma\right)^{2} / 2}
\end{array}
$$

## Effect of Fading on $\mathrm{P}_{\mathrm{e}}\left(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}\right)$

$P_{e}$ curve increases and flattens when there is fading


## Remedies for Error Bursts

1. Diversity - Space

- Frequency
- Polarization

2. General error-correcting codes
3. Same, plus interleaving:


Error burst, hits only, one bit per block

4. Reed-Solomon codes
(Tolerate adjacent errors better than random ones)
e.g. multivalue symbols A (say 4 bits each, 16 possibilities) so then block error-correct the symbols $A$ :
.. AAA...A AAA...A A...

## Remedies for Error Bursts

Fading flattens $\mathrm{P}_{\mathrm{e}}\left(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}\right)$ curve, so potential coding gain can exceed 10 dB sometimes


Note: Coding gain greater for flatter $\mathrm{P}_{\mathrm{e}}\left(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}\right)$

