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Multi-Phase-Shift Keying, “MPSK” 
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QPSK: Quadrature Phase-Shift Key
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M = 2 phases 
M = 4 (2 bits) 
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Error Probabilities for Binary Signaling 
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Matched filter reception of unipolar 
baseband, coherent OOK or coherent FSK 

Matched filter 
reception of 
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Source: Digital and Analog Communication Systems
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Phasor Diagrams 
S(t) = Re{Sejωt} 
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Baud 
Boundary 

Want symbols to be orthogonal
within and between windows 
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MPSK Examples: 
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Performance Degradation Due to Interchannel Interfence 
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0 0.5  1  
Closer channel spacing requires more signal power to maintain P
Recover by boosting signal power (works until N

Interfering Channels 
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(for a given E/N
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Error Reduction via Channel Coding 

We want Pe → ⇒ o → ∞ using prior methods 

Theorem: Pe →

∼21 dB 
e.g. 3-kHz phone at 9600 bps requires S/N ≥ 10 dB ~ 

Shannon’s Channel Capacity Theorem 

C = B LOG2 /N) bits/sec 

[Hz] oB 

Average Signal Power 

H1Lec14.10-7 

0 (banking, etc.) E/N

0 if channel capacity “C” not exceeded, in bits/sec 

Examples: S/N = 10 yields C = 3B (3 bits/Hz), S/N = 127 yields C = 7B (7 bits/Hz) 

(1 + S

Noise Power = N

(Shannon showed “can,” not “how”) 
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Channel Codes 

Channel codes are our principal approach to letting 
R → C with acceptable Pe 

e 

Solomon Golomb: 
has gotten to be quite a rarity; 
to combat the terror of serious error, 
use bits of appropriate parity. 

H2 

Definitions: 

Lec14.10-8 

1. “Channel codes” reduce P

2. “Source codes” reduce redundancy 

3. “Cryptographic” codes conceal 

A message with content and clarity 



Coding Delays Message and Increases Bandwidth


Can show: Pe ≤ 2–Tk(C,R), T = time delay in coding process 

e.g. use M = 2RT possible messages in T sec.

(RT = #bits in T sec; “block coding”)


use M = 2RT frequencies spaced at ∼1/T Hz 

then B = 2RT/T (can → ∞!) 

Lec14.10-9 H3
2/6/01 
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Minimum S/No for Pe → 0 

Therefore 

S/No ≥ e → 0 as B → ∞  

H4 

( ) ( ) bits/secRNS 0ePo →∞ ≥= ∆ = 
B→∞ 

Pe{Bit Error} 
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frequencies 
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0.69 R for P

2 ln C lim C : show Can 

10  
M = number of 
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Error Detection K + R Code 

Blocks: message check bits 

K bits R bits 

Simple parity check – xxx…x P where P ∋ Σ 1’s = 
even 
or 
odd 

(2 standards) 

(half are illegal here). 

K bits R = 1 bit 

H5Lec14.10-11 

i.e. = A single bit error transforms its block to “illegal” message set 
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Error Correction Code 

1 m2…mK ….m

Any of these K + R bits can be erroneous 

Receive: m1 m2……………m
Correct: m1 m2……………m

Sum (modulo 2) = 0’s if no error → 0 0 0 

Consider locations of “1”s in K + R slots of Sum 

we need K + R ≥ K + LOG2 its/block 

Original 

Number of 
Slots for 

1-bit error 

“No Error” 
Message 

ˆ ˆ ˆ 
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Message = m Checks = mK + 1 K + R  

K + R  

K + R  

If we wish to detect and correct 0 or 1 bit error in the block of K + R bits, 
(K + R + 1) b

Information 
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Single-Bit Error Correction 

K = R ≥ R/(R +K) 
1 2 0.67 
2 3 
3 3 
4 3 
5 4 
100 7 
103 ~10 
106 ~20 

Not too 
efficient 

R = Check bits needed 
≤ 1 error 

H7 

we need K + R ≥ K + LOG2 its/block 

Original 

Number of 
Slots for 

1-bit error 

“No Error” 
Message 
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0.6  
0.5  
0.4  
0.4  
0.07 
0.01 
0.002 

to detect and fix 
in a block of K + R 

If we wish to detect and correct 0 or 1 bit error in the block of K + R bits, 
(K + R + 1) b

Information 
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Two-Bit Error Correction 

) 
2 

“No Error” 
Message 

K = R ≥ R/(R +K) 
5 7 
103 ∼20 0.02 
106 ∼40 0.004 

R = Check bits needed 
≤ 2 errors 

We need K + R ≥ K + LOG2 1 + K + R + 

1 Error 

J1Lec14.10-14 

(K + R)(K + R - 1

0.6  
to detect and fix 
in a block of K + R bits 

If we wish to correct two errors: 

2 Errors 
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Implementation: Single-Error Correction 
∆ 

(Note: C1 ⊕ C1 = m1 ⊕ m2 ⊕ m3 ⊕ C1 ≡ 0)∆ 

C2 = m1 ⊕ m2 ⊕ m4 
∆ C3 = m1 ⊕ m3 ⊕ m4 

∆ 

J2 

Block = m1 m2 m3 m4 C1 C2 C3 

(K = 4, R = 3) (4 message bits, 3 check bits) 

If no errors 
(Note: m1 ⊕ m2 ⊕ m3 = C1) 

1 1 1 0 1 0 0 m1 0 
1 1 0 1 0 1 0 m2 = 0 
1 0 1 1 0 0 1 m3 0 

m4 
C1 
C2 
C3 

∆ 

= H∆ 

Modulo-2 
matrix 

multiply 

Q =∆ 

1 = m1 ⊕ m2 ⊕ m3 ⊕ 0 1 
0 0 1 
1 1 0 

“Sum, modulo-2” 
Truth Table 

∆ 
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HQ = 0 defines legal codewords Q 

Let C
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Implementation: Single-Error Correction 

Can even rearrange transmitted word so: 
0 0 0 1 1 1 1 C3 
0 1 1 0 0 1 1 C2 
1 0 1 0 1 0 1 m4 
1 2 3 4 5 6 7 C1 

m3 
m2 
m1 

of error location “L” 

J3 

1, C2, and C3 
3 

1 1 
⇒ Error in m3 Note that Hi3 = 0  

1 1 

≡ 0 ≠ 0 

Interpret to yield error-free Q from R 

Lec14.10-16 

HQ = 0 defines legal codewords Q 

L =  

= E = Binary representation 

Only 1/8 of all 7-bit words are legal because C are each 
correct only half the time and (0.5) = 1/8 

Say HR = 0 

Suppose transmitted Q is legal and received R = Q + E then HR = HQ + HE 
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Pe Benefits of Channel Coding 

⇒ less E/No 

Pe → 6 × 10-4 (per bit; depends on modulation) 

4 
7 

e 

Benefits depend on Pe(E/No) relation 

7 
2p{2 errors in 7 bits @ 6 × 10-4} = p{no error}5 2 ≅ 8 × 10-6 

(6 × 10-4)2 
! 

Compare new p{block error} 8 × 10-6 to 4 × 10-5 without coding 

J4 

Suppose Pe = 10-5, then P{error in 4-bit word} = 1 – ( -5)4 ≅ 4 × 10-5 

P{no errors}
(no-coding case) 

Lec14.10-17 

If we add 3 bits to block (4 + 3 = 7) for single-error correction, 
and send it in the same time (2.4 dB loss) 

Alternatively, reduce power and maintain P

• p{error}

7 • 6/2

Coding reduced block errors by a factor of 5 with same transmitter power 

1 – 10
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Benefits of Soft Decisions 
Soft decisions can yield ∼2 dB SNR improvement for same Pe 

incorrectly. Choose the one bit for which the 
decision was least clear. 

e.g. 

v 
A B  C  G  H  

i = 1 

i = 2 

“Soft Decision:” 
Say 8 Levels 

J5Lec14.10-18 

Example: Parity bit implies one of n bits was received 

D  E F  

“Hard Decision:” 2 Alternatives 
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Constraint 
Length 

employ overlapping
blocks (sliding window) 

One advantage: accommodates soft decisions 
Here each message bit impacts 3 output bits and therefore
impacts decoder decisions impacting 3 or more reconstructed
bits, so soft decisions help identify erroneous bits. 

J6 

2R bits/sec output 

3-bit shift register 
Sum modulo 2 

Example: 

InR (bits/sec) 
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Convolutional Codes 

Convolutional codes 

This is a “rate 1/2, constraint-length-3 convolutional coder” 
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e.g. Fading from deep vigorous multipath 

Σ xi cos ωt + yi sin ωt 
(sum of N phasors, one per path) 

N 

i = 1 

Im{z} z2 (t)(filtered) 

Deep Fade
t00 Re{z} 

i = 1z 

K1 

z 

i and yi are independent g.r.v.z.m. 
Im{z} P{|z|} 

0 0Re{z} |z|
eσ2 
1 

σ 
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Rayleigh Fading Channels 

Consider multipath with output signal z(t) = 

Rayleigh fading: x
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Variance of Re{z}, Im{z} ≡ σ2 

〈|z|〉 = σ π/2 

〈|z|2〉 = σ2(2 – π/2) 

|z| – 〈|z|〉 2 ≅ 2σ/3 ≠ f(N) 

P{|z| >  zo} = e–(zo/σ)2/2 

K2 

i and yi are independent g.r.v.z.m. 

Im{z} P{|z|} 

0 0 
z 

Re{z} |z|eσ2 

1 

σ 
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Rayleigh Fading Channels 
Rayleigh fading: x
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Effect of Fading on Pe(Eb/No) 
Pe curve increases and flattens when there is fading 

Pe 

Eb/No(dB) 

Pe 
New Pe{Eb/No} Relation 
After Fading 

Eb(t) 
Fading history, 
increases Pe(t) 

t 

Deep fades produce 
bursts of errors 
(error clusters) 

p{Eb/No} 
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Remedies for Error Bursts 

AAA…A AAA…A 

(Tolerate adjacent errors better than random ones)

so then block error-correct the symbols A: 

≥ 2 independent paths 

K4 

Error burst, hits only,
one bit per block 

Burst hits fewer 
bits per block 

t 
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2. General error-correcting codes 

A… 

4. Reed-Solomon codes 

e.g. multivalue symbols A (say 4 bits each, 16 possibilities)

1. Diversity – Space 
– Frequency 
– Polarization 

3. Same, plus interleaving: 
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Remedies for Error Bursts 
Fading flattens Pe(Eb/No) curve, so potential coding gain 
can exceed 10 dB sometimes 

10 dB 
10-8 

10-2 

Pe 
Increase in Eb required to accommodate coding 

Reduction in Pe using coding 

Eb/No (dB) 

New Pe for coded fading channel 

Note: Coding gain greater for flatter Pe(Eb/No) 

Coding Gain 

K5 

Flatter Pe(Eb/No) for 
fading channel 
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