Receivers, Antennas, and Signals

Modulation and Coding Professor David H. Staelin

Error Probabilities for Binary Signaling

Source: Digital and Analog Communication Systems, L.W. Couch II, (4th Edition), Page 351

Phasor Diagrams

Intersymbol Interference

Performance Degradation Due to Interchannel Interfence

Closer channel spacing requires more signal power to maintain P_e Recover by boosting signal power (works until N_o becomes negligible)

Error Reduction via Channel Coding

Shannon's Channel Capacity Theorem

We want $P_e \rightarrow 0$ (banking, etc.) $\Rightarrow E/N_o \rightarrow \infty$ using prior methods

Theorem: $P_e \rightarrow 0$ if channel capacity "C" not exceeded, in bits/sec

(Shannon showed "can," not "how")

Examples: S/N = 10 yields C = 3B (3 bits/Hz), S/N = 127 yields C = 7B (7 bits/Hz) ~21 dB e.g. 3-kHz phone at 9600 bps requires S/N \geq 10 dB

Channel Codes

Definitions:

- 1. "Channel codes" reduce P_e
- 2. "Source codes" reduce redundancy
- 3. "Cryptographic" codes conceal

Solomon Golomb: A message with content and clarity has gotten to be quite a rarity; to combat the terror of serious error, use bits of appropriate parity.

Channel codes are our principal approach to letting $R \rightarrow C$ with acceptable ${\rm P_e}$

Coding Delays Message and Increases Bandwidth

Can show: $P_e \le 2^{-Tk(C,R)}$, T = time delay in coding process

e.g. use $M = 2^{RT}$ possible messages in T sec. (RT = #bits in T sec; "block coding")

use M = 2^{RT} frequencies spaced at ~1/T Hz then B = $2^{RT}/T$ (can $\rightarrow \infty$!)

Minimum S/N_o for $\mathrm{P_e} \rightarrow 0$

Can show :
$$C_{\infty} \stackrel{\Delta}{=} \lim_{B \to \infty} C = S/(N_0 \ln 2) \ge R_{(P_e \to 0)}$$
 bits/sec

Therefore

$$S/N_o \ge 0.69 R$$
 for $P_e \rightarrow 0$ as $B \rightarrow \infty$

Error Detection K + R Code

i.e. = A single bit error transforms its block to "illegal" message set (half are illegal here).

Error Correction Code

Message = $m_1 m_2 \dots m_K$ Checks = $m_{K+1} \dots m_{K+R}$

Any of these K + R bits can be erroneous

Receive:	m₁		. m̂ _{K + R}
Correct:	m ₁	m ₂	.m _{K+R}
Sum (modulo 2) = 0's if no error \rightarrow	0	0	0

Consider locations of "1"s in K + R slots of Sum

If we wish to detect and correct 0 or 1 bit error in the block of K + R bits, we need $K + R \ge K + LOG_2 (K + R + 1)$ bits/block Original Information

Single-Bit Error Correction

If we wish to detect and correct 0 or 1 bit error in the block of K + R bits, $K + R \ge K + LOG_2 (K + R + 1)$ bits/block we need Original Information Number of "No Error" Slots for Message 1-bit error R/(R + K)K = $R \ge$ 2 0.67 R = Check bits needed 3 2 0.6 Not too to detect and fix \leq 1 error 3 3 0.5 efficient in a block of K + R3 4 0.4 5 4 0.4 100 7 0.07 10^{3} ~10 0.01 10^{6} ~20 0.002

Two-Bit Error Correction

K =	R ≥	R/(R +K)	
5	7	0.6	R = Check bits needed
10 ³	~20	0.02	to detect and fix \leq 2 errors in a block of K + R bits
10 ⁶	~40	0.004	

Implementation: Single-Error Correction

 $\overline{\overline{H}}\overline{Q} = \overline{0}$ defines legal codewords $\overline{\overline{Q}}$

Implementation: Single-Error Correction

 $\overline{H}\overline{Q} = \overline{0}$ defines legal codewords \overline{Q}

Only 1/8 of all 7-bit words are legal because C_1 , C_2 , and C_3 are each correct only half the time and $(0.5)^3 = 1/8$ Suppose transmitted \overline{Q} is legal and received $\overline{R} = \overline{Q} + \overline{E}$ then $\overline{H}\overline{R} = \overline{H}\overline{Q} + \overline{H}\overline{E}$

Interpret to yield error-free \bar{Q} from \bar{R}

Say
$$\overline{H}\overline{R} = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \Rightarrow$$
 Error in m₃ (Note that $H_{i3} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$)
Can even rearrange transmitted word so:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 1 & 0 & 0 & 1 & 1\\1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_3\\C_2\\m_4\\C_1\\m_3\\m_2\\m_1 \end{bmatrix} = \overline{E} = \text{Binary representation of error location "L"}$$

P_e Benefits of Channel Coding

Suppose $P_e = 10^{-5}$, then P{error in 4-bit word} = $1 - (1 - 10^{-5})^4 \cong 4 \times 10^{-5}$ (no-coding case) P{no errors}

If we add 3 bits to block (4 + 3 = 7) for single-error correction, and send it in the same time $\Rightarrow \frac{4}{7}$ less E/N_o (2.4 dB loss)

 $P_e \rightarrow 6 \times 10^{-4}$ (per bit; depends on modulation)

p{2 errors in 7 bits @ 6×10^{-4} } = p{no error}⁵ • p{error}² $\binom{7}{2} \cong 8 \times 10^{-6}$ (6×10^{-4})² 7 • 6/2!

Compare new p{block error} 8×10^{-6} to 4×10^{-5} without coding

Coding reduced block errors by a factor of 5 with same transmitter power

Alternatively, reduce power and maintain P_e Benefits depend on $P_e(E/N_o)$ relation

Benefits of Soft Decisions

Soft decisions can yield $\sim 2 \text{ dB}$ SNR improvement for same P_e

Example: Parity bit implies one of n bits was received incorrectly. Choose the one bit for which the decision was least clear.

Convolutional Codes

Receivers, Antennas, and Signals

Modulation and Coding Professor David H. Staelin

Lec14.10-20 2/6/01

Rayleigh Fading Channels

Rayleigh Fading Channels

Rayleigh fading: x_i and y_i are independent g.r.v.z.m.

Variance of Re{z}, Im{z} = σ^{2} $\langle |\underline{z}| \rangle = \sigma \sqrt{\pi/2}$ $\langle |\underline{z}|^{2} \rangle = \sigma^{2}(2 - \pi/2)$ $\sqrt{(|\underline{z}| - \langle |\underline{z}| \rangle)^{2}} \cong 2\sigma/3 \neq f(N)$ $P{|\underline{z}| > z_{o}} = e^{-(z_{o}/\sigma)^{2}/2}$

Effect of Fading on $P_e(E_b/N_o)$ P_e curve increases and flattens when there is fading Ρ е New $P_e \{E_b / N_o\}$ Relation P_{e} After Fading $E_{b}/N_{o}(dB)$ $p\{E_b/N_o\}$ $E_{\rm b}(t)$ Fading history, Deep fades produce increases $P_{e}(t)$ bursts of errors (error clusters)

Remedies for Error Bursts

(Tolerate adjacent errors better than random ones) e.g. multivalue symbols A (say 4 bits each, 16 possibilities) so then block error-correct the symbols A:

AAA...A AAA...A A...

Remedies for Error Bursts

Fading flattens $P_e(E_b/N_o)$ curve, so potential coding gain can exceed 10 dB sometimes

Note: Coding gain greater for flatter $P_e(E_b/N_o)$