Phaseless Interferometry

Hanbury-Brown and Twiss Visible interferometer at Narrabri, Australia



For
$$T_R >> T_A$$
, $\frac{V_{o rms}}{\langle V_o \rangle} \cong \frac{T_R^2}{T_A^2 \sqrt{2W\tau}}$

One might (wrongly) think photodetectors would lose all phase information and ability to measure source structure at λ /D resolution.

Recall: E[aabb] =
$$\overline{a^2}\overline{b^2} + 2\overline{ab}^2$$
,
where \overline{ab} is $\phi_{\underline{E}}(\overline{\tau}_y)$ here

Lec20.4-1 2/26/01

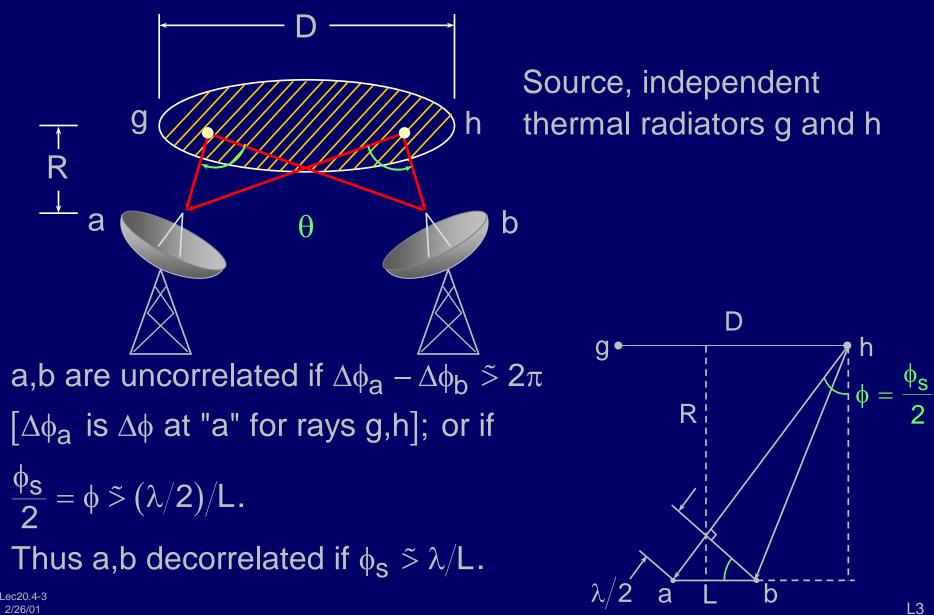
Phaseless Recovery of Source Structure

Recall: E[aabb] = $\overline{a^2}\overline{b^2} + 2\overline{ab}^2$, where \overline{ab} is $\phi_{\underline{E}}(\overline{\tau}_y)$ here.

Recall:
$$\underline{\mathsf{E}}(\mathsf{x}, \mathsf{y}) \leftrightarrow \underline{\mathsf{E}}(\overline{\mathsf{\psi}})$$

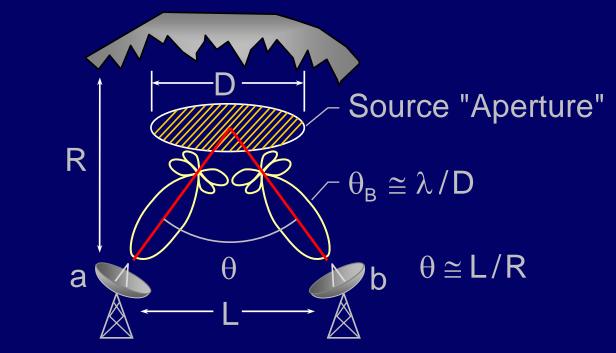
 $\begin{array}{c} \underbrace{\Phi}_{\underline{E}}\left(\overline{\tau}_{\lambda}\right) & \longleftrightarrow & \left|\underline{E}\left(\overline{\psi}\right)\right|^{2} \Rightarrow I\left(\overline{\psi}\right) \\ \downarrow & \downarrow \\ \left|\underline{\Phi}_{\underline{E}}\left(\overline{\tau}_{\lambda}\right)\right|^{2} \leftrightarrow & \mathsf{R}_{\left|\underline{E}\left(\overline{\psi}\right)\right|^{2}}\left(\Delta\overline{\psi}\right) \end{array}$

Phaseless Interferometer Interpretation: Independent Radiators



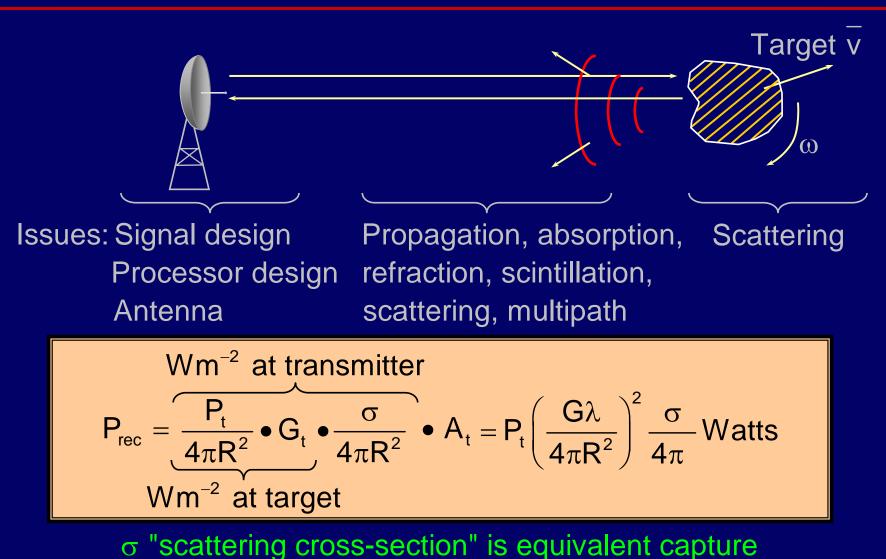
2/26/01

Phaseless Interferometer Diffraction-Limited Source



If $\theta > \theta_B \simeq \lambda/D$, then a and b are ~uncorrelated

Radar Equation



cross-section for a target scattering isotropically

Radar Scattering Cross-Section

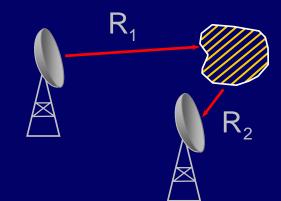
 σ "scattering cross-section" is equivalent capture cross-section for a target scattering isotropically

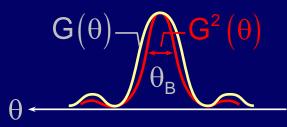
Note: Corner reflector can have $\sigma >>$ size of target

Biastatic radars:

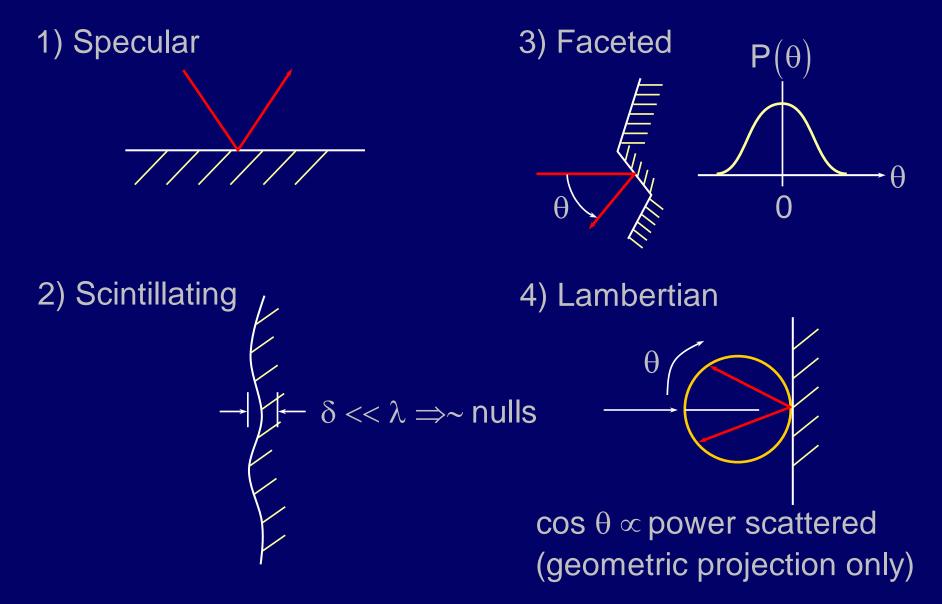
If target is unresolved, $P_{rec} \propto 1/R_1^2 R_2^2$ If target is resolved by the transmitter, $P_{rec} \propto 1/R_2^2$

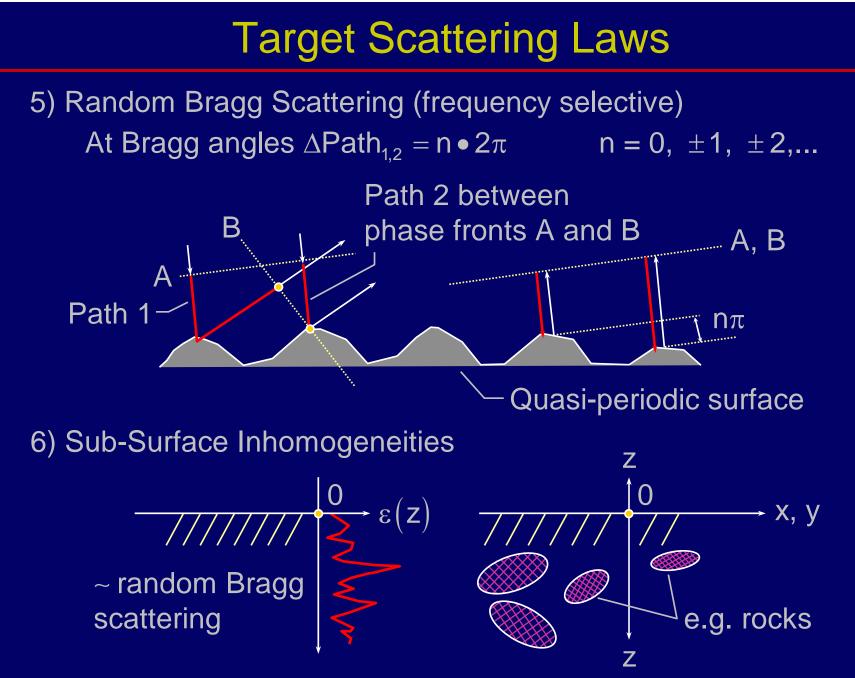
Note resolution enhancement: $P_{rec} \propto R^{-4}G^2$ where $G^2(\theta)$ has a narrower beam than $G(\theta)$





Target Scattering Laws



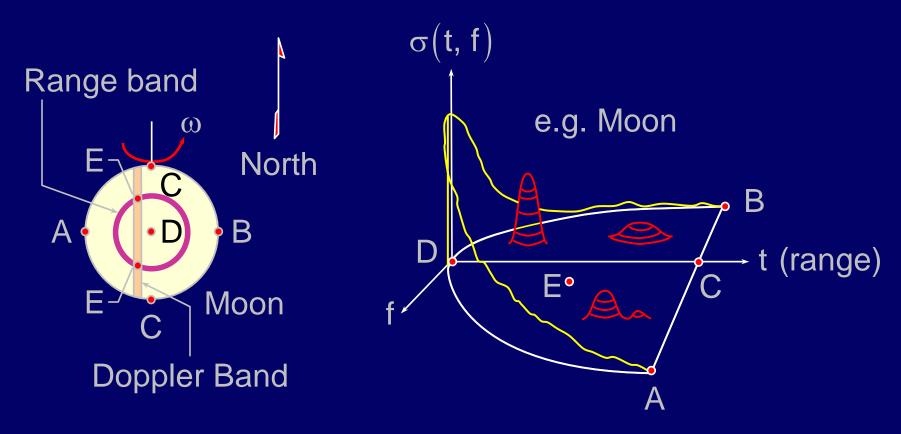


Target Range-Doppler Response



Lec20.4-9 2/26/01

Range-Doppler Response for a CW Pulse



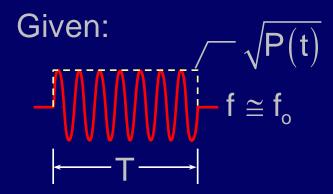
Note north-south ambiguity

Radar Range and Doppler Ambiguity

Professor David H. Staelin Massachusetts Institute of Technology

Lec20.4-11 2/26/01

Optimum CW Pulse Radar Receiver

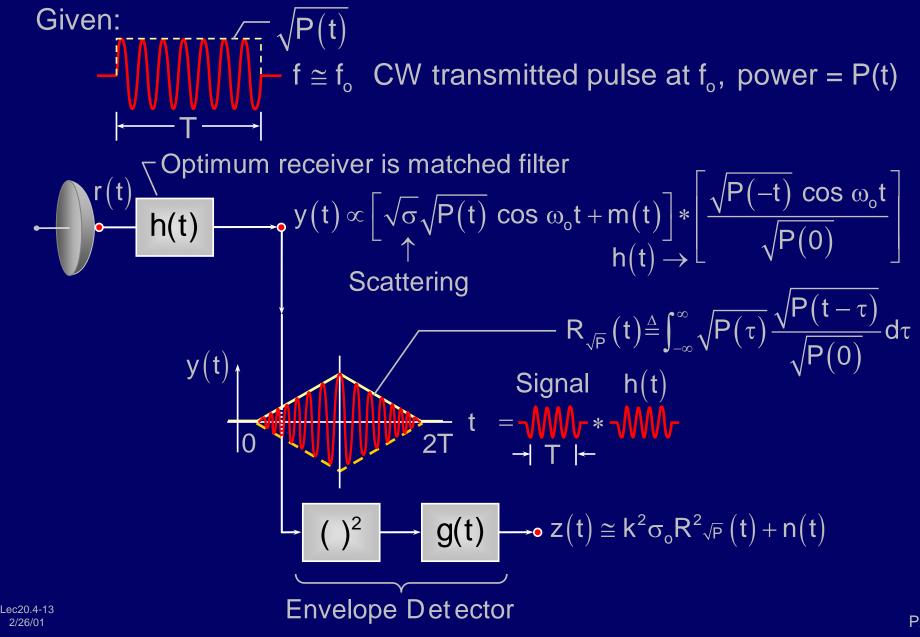


CW transmitted pulse at f_o , power = P(t)

Receives for point source: $r(t) (volts) = k\sqrt{\sigma}\sqrt{P(t)} \cos \omega_{o}t + m(t)$ $\uparrow \qquad \uparrow$ $\infty \sqrt{G^{2}} etc.$ Usually Gaussian white noise

A bank of matched filters could test every possible delay, but the output envelope of a single filter matched to the transmitted waveform is equivalent.

Optimum CW Pulse Radar Receiver

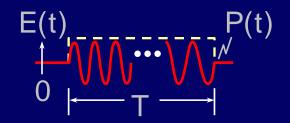


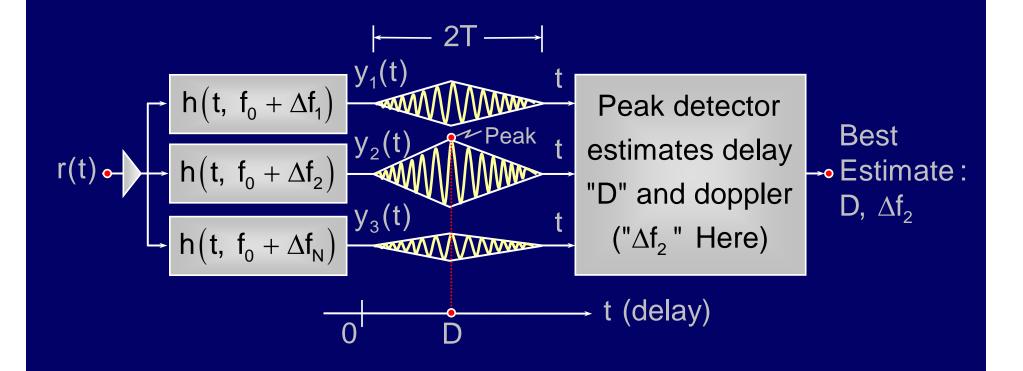
Optimum CW Pulse Radar Receiver

$$\begin{array}{c} & & & \\ & & &$$

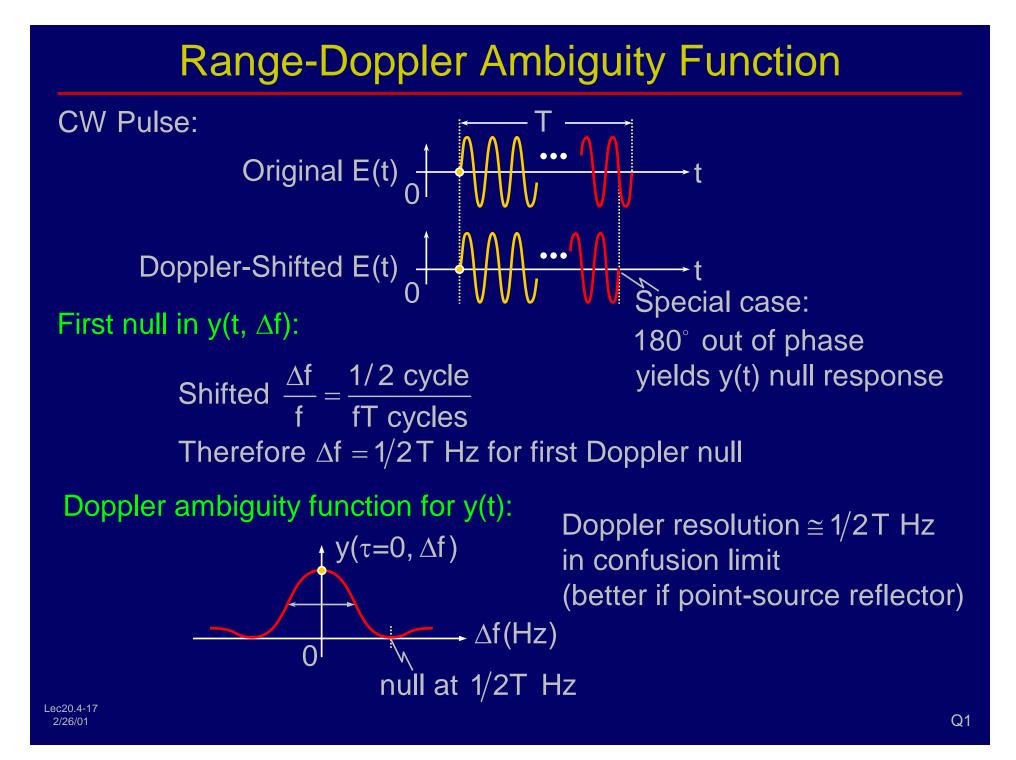
Range-Doppler Matched-Filter Receiver

Pulsed CW (Continuous Wave) transmitted signal (e.g.):



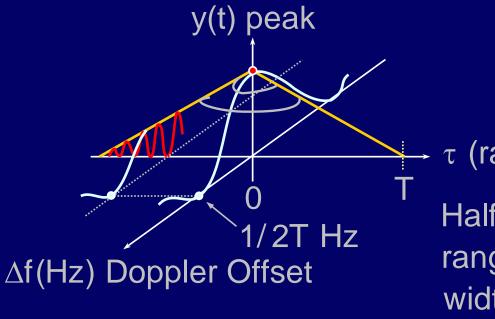


Range-Doppler Matched-Filter Receiver Alternative range-doppler matched filter receiver y(t) **z**(t) Matched $h(t, f_0 + \Delta f_1) - ()^2 - h_2(t)$ Filter for Envelope **z(t)** $h(t, f_0 + \Delta f_2)$ ()² $h_2(t)$ Estimates: r(t)•+ ••D, ∆f₂ Delay "D" **z(t)** and n(t) $h(t, f_0 + \Delta f_N)$ ()² $h_2(t)$ Doppler " Δf_2 " Here Filter Bank Envelope or: detector Peak $h(t, f_0 + \Delta f_1) = p(-t) \cos(-(\omega + \Delta \omega_1) t)$ ••D, ∆f₂ detector



Range-Doppler Ambiguity Function

Range-doppler ambiguity function for y(t); Represents point-source response:



+ τ (range offset, seconds)

Half-power width in range \cong T seconds; width in Doppler \cong 1/2T Hz

Heisenberg uncertainty principle:

 $\Delta t\Delta f \cong 1$ for $-\int_{M} \int_{M} Or: BT \cong 1 = time-bandwidth product, where <math>B \cong 1/T$ Hz here

CW Pulse Radar Response $Z \cong \sigma(\tau, \Delta f) * R(\tau, \Delta f)$

Ambiguity function $R(\tau, \Delta f) = z(\tau, \Delta f)$ for point target = "impulse response" for radar.

Therefore

 $\mathsf{Z}(\tau,\,\Delta\mathsf{f}) = \mathsf{R}(\tau,\,\Delta\mathsf{f}) * \sigma_{\mathsf{s}}(\tau,\,\Delta\mathsf{f})$

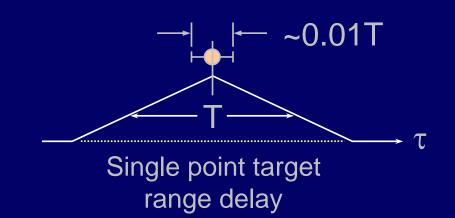
where $\sigma_s(\tau, \Delta f) = target$ response function

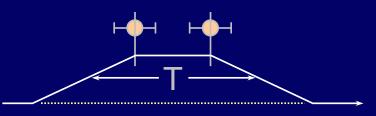
That is: Radar response = (ambiguity function) * (target response)

Note: For good image reconstruction of complex images we are limited largely by T and 1/2T resolution in delay, Doppler

CW Pulse Radar Response – Simple Targets

For a point target, delay and Doppler resolution can achieve ~0.01T and 1/200T, or better, if the SNR is sufficiently high; almost the same is possible for 2 point targets

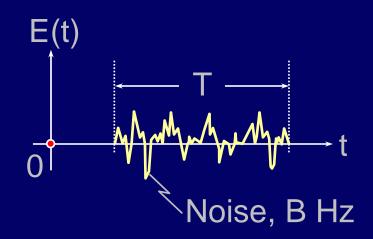




Pair of point targets

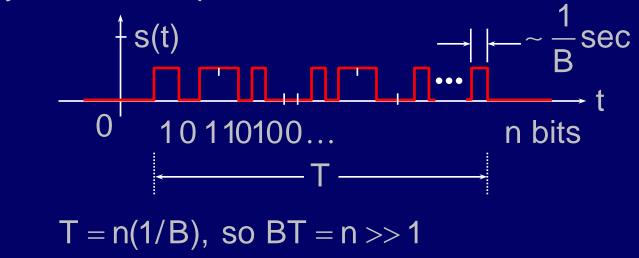
Improved Resolution for Signals with BT>>1

Example:



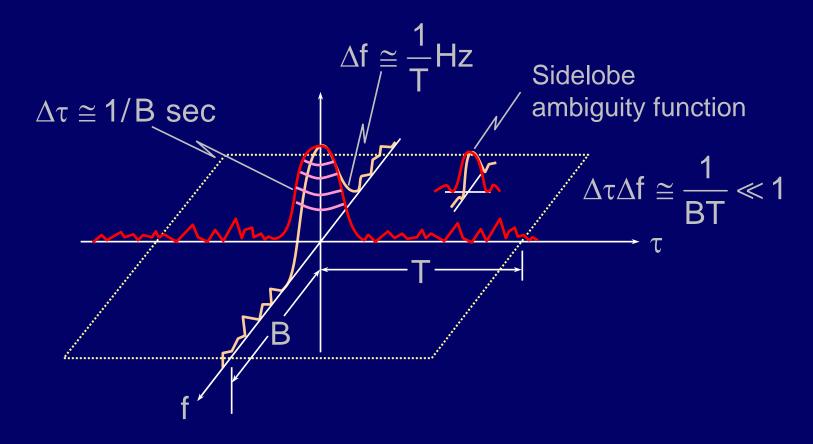
BT >> 1 for white noise, PRN (pseudo-random noise), binary data with ~BT bits per block

Binary Code Example:



Improved Resolution for BT>>1 Signals

Ambiguity function $z(t, \Delta f)$ for $BT \gg 1$:



Design of $s(t) \cos \omega t$ to yield minimum ambiguity sidelobes is difficult; trial and error is common design technique.

Lec20.4-22 2/26/01