Synthetic Aperture Radar (SAR)

Claim Equivalent to Moving Antenna:

Assumes phase coherence in oscillator during each image

Synthetic Aperture Radar (SAR)

Lec20.4-2 2/26/01

Resolution of "Unfocused" SAR

Reconstruction of image: first select R, x_o of interest

SAR angular resolution: $\theta_{SAR} \cong \lambda/L_{SAR} \ge \lambda/R\theta_{B} = D/R$ $\simeq \lambda/D$

Resolution of "Unfocused" SAR

SAR angular resolution: $\theta_{SAR} \cong \lambda / L_{SAR} \ge \lambda / R\theta_{B} = D / R$

Lateral spatial resolution $= \theta_{SAR} \bullet R \cong D$ (want small D, large θ_{B} , large L) Range resolution $\cong cT/2$

Note: If antenna is steered toward the target, increasing L, the lateral resolution can be < D.

Then repeat for all R, x_0

 $\simeq \lambda / D$

Phase-Focused SAR

Phase focusing is required if $\delta > \lambda/16$, so the target is in the SAR near field, i.e., if $R < 2L^2 / \lambda = 2\lambda R^2 / D^2$ (where $L = \lambda / \theta_{SAR} = \lambda R / D$).

Phase-Focused SAR

Solution: $W(x) \rightarrow W'(x)$ with phase correction

PRF must be higher; to reconstruct $\phi(t)$ we need at least 2 samples per phase wrap.

Note: With phase focusing, L increases and spatial resolution in x ca be less than D, using beamsteering (e.g. a phased array)

Also: L.O. phase drift can be corrected if bright point sources exist in scene.

Required Pulse-Repetition Frequency (PRF)

W(x) • I(x) • $\underline{\hat{E}}(x)$ Observed $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$ W(ψ_x) * I(ψ_x) * $\underline{E}(\psi_x) = \underline{\hat{E}}(\psi_x)$

PRF Impacts SAR Swath Width

Don't want echoes to overlap for successive pulses. Therefore let $2(R_{max} - R_{min})/c \lesssim (\frac{1}{PRF}) = L'/v_x \ll \frac{D}{v_x}$ Implies that large swath widths require large $\frac{D}{v_x}$

and yield poorer spatial resolution.

Envelope Delay Focusing

Compensation for both envelope delay and phase delay is needed for very high spatial resolution [i.e., for small ΔR (large B)] and large $\theta_B R_0$.

SAR Intensity Estimates: Speckle

For each SAR pixel, the estimated cross-section is:

 $\hat{\sigma} = K \left| \sum_{i,j} w(x_i) \underline{E}_{ij} \right|^2 \text{ where } \begin{cases} K = \text{ range-dependent constant} \\ i = \text{ pulse number} \\ j = \text{ subscattering index} \end{cases}$

Many subscatters j per pixel

Simplifying:
$$\hat{\sigma} = \left| \sum_{k=1}^{N} \underline{\varepsilon}_{k} \right|^{2} = \left| \sum_{k=1}^{N} a_{k} e^{j(\omega t + \phi_{k})} \right|^{2} = \left| \underline{r} \right|^{2}$$

random variable uniformly over 2π typically

SAR Intensity Estimates: Speckle

Because we are adding (averaging) phasors, not scalars $\sqrt{E[r-r]^2} \cong 2\sigma/3 \neq f(N)!$

Thus raw SAR images, full spatial resolution, have $\frac{\text{STD deviation}}{\text{mean intensity}} \triangleq Q \cong \frac{2\sigma/3}{\sigma\sqrt{\pi/2}} = 0.53 \Rightarrow \text{very grainy images}$

Lec20.4-11 2/26/01

Reduction of SAR Speckle

Alternate ways to reduce "speckle" by averaging pixel intensities:

 Blur image by averaging M² pixels ⇒ Q = 0.53/M (using large Bτ signals yields high resolution, can be smoothed)
 Average using spatial diversity

Reduction of SAR Speckle

Alternate ways to reduce "speckle" by average pixel intensities:

3) Average using frequency diversity, where each band yields an independent image. Note that the same total bandwidth could alternatively yield more range resolution and pixels for averaging.

Reduction of SAR Speckle

4) Time averaging works only if source varies. For example a narrow swath permits high PRF and an increase in N, but unless the antenna translates more than ~λR/D between pulses [R = range, D = pixel width (m)], then adjacent pulse returns are correlated.

In general, reasonably smooth images need > 8 levels, so $Q' = S.D./M \cong (1/3)/4$ levels = 1/12, versus $Q \cong 1/2$. To reduce standard deviation by 6, need N \ge 6² = 36 looks.

Lec20.4-14 2/26/01

Alternative SAR Geometries and Applications

Velocity dispersion within inverse SAR (ISAR) source (e.g., a moving car) can displace its apparent position laterally.

Examples taken from Remote Sensing Principles are Nonetheless Widely Applicable

Linear and Non-Linear Problems Gaussian and Non-Gaussian Statistics

> Professor David H. Staelin Massachusetts Institute of Technology

Linear Estimation: Smoothing and Sharpening

Smoothing reduces image speckle and other noise; sharpening or "deconvolution" increases it.

Sharpening can "de-blur" images, compensating for diffraction or motion induced blurring.

Audio smoothing and sharpening are similar.

Consider antenna response example; we observe:

$$\mathsf{T}_{\mathsf{A}}\left(\overline{\psi}_{\mathsf{A}}\right) = \frac{1}{4\pi} \int_{4\pi} \mathsf{G}\left(\overline{\psi}_{\mathsf{A}} - \overline{\psi}_{\mathsf{s}}\right) \mathsf{T}_{\mathsf{B}}\left(\overline{\psi}_{\mathsf{s}}\right) \mathsf{d}\Omega_{\mathsf{s}}$$

Linear Estimation: Smoothing and Sharpening

Consider antenna response example; we observe:

Example: Square Uniformly-Illuminated Aperture

 $2/26/0^{-1}$

A4

Example: Square Uniformly-Illuminated Aperture $\hat{\mathsf{T}}_{\mathsf{B}}\left(\overline{\mathsf{f}_{\psi}}\right) = \frac{4\pi \underline{\mathsf{T}}_{\mathsf{A}}\left(\overline{\mathsf{f}_{\psi}}\right)}{\underline{\mathsf{G}}\left(\overline{\mathsf{f}_{\psi}}\right)} \xrightarrow{\text{This restores high-frequency components, but}} \underbrace{\mathsf{G}\left(\overline{\mathsf{f}_{\psi}}\right)}_{\underline{\mathsf{G}}\left(\overline{\mathsf{f}_{\psi}}\right)} \xleftarrow{\text{goes to zero for }} \left|\overline{\mathsf{f}_{\psi}}_{x}\right| > \mathsf{D} / \lambda!$ Try: $\hat{\mathsf{T}}_{\mathsf{B}}\left(\overline{\mathsf{f}_{\psi}}\right) = \frac{4\pi \underline{\mathsf{T}}_{\mathsf{A}}\left(\mathsf{f}_{\psi}\right)}{\underline{\mathsf{G}}\left(\overline{\mathsf{f}_{\psi}}\right)} \mathsf{W}\left(\overline{\mathsf{f}_{\psi}}\right)$ $t_{\psi_X}, \tau_{X_\lambda}$ $\frac{r}{\lambda}$ cycles/radian Ψ, The window function $W(f_{\psi})$ avoids the singularity. The "principal solution" uses a boxcar W(s).

Lec20.4-20 2/26/01

Example: Square Uniformly-Illuminated Aperture

Consider the restored (sharpened) image of a point source, $T_B(\overline{\psi}) = \delta(\overline{\psi})$: Then $T_{\underline{B}}(f_{\psi}) = 1$, so $\hat{T}_{\underline{B}}(\overline{f_{\psi}}) = 4\pi \underline{T}_A(\overline{f}_{\psi})W(\overline{f}_{\psi})/G(\overline{f}_{\psi}) = W(\overline{f}_{\psi})$, since $T_A(\overline{f}_{\psi}) = G(\overline{f}_{\psi})T_B(\overline{f}_{\psi})/4\pi$

 $\hat{T}_{B}(\overline{\Psi}) = 2$ -D sinc function for a uniformly illuminated rectangular antenna aperture.

Therefore optimize $W(f_{\psi})$

Sharpening Noisy Images

Therefore optimize W
$$\left(\overline{f_{\psi}}\right)$$
:
Minimize E $\left[\left| \underline{T}_{B}\left(\overline{f_{\psi}}\right) - \frac{4\pi \underline{W}\left(\overline{f_{\psi}}\right)}{G\left(\overline{f_{\psi}}\right)} \left(\underline{T}_{A_{0}}\left(\overline{f_{\psi}}\right) + \underline{N}\left(\overline{f_{\psi}}\right) \right) \right|^{2} \right] \stackrel{\Delta}{=} C$

$$\partial Q / \partial W = 0$$
 yields:

$$\frac{\partial W = 0 \text{ yields:}}{\underline{W}\left(\overline{f_{\psi}}\right)_{\text{optimum}}} = \frac{E\left[\left|\underline{T}_{A_{0}}\left(\overline{f}_{\psi}\right)\right|^{2} + \frac{1}{2}\underline{T}_{A_{0}}\left(\overline{f}_{\psi}\right)\underline{N}\left(\overline{f_{\psi}}\right)^{*} + \frac{1}{2}\underline{T}_{A_{0}}^{*}\left(\overline{f}_{\psi}\right)\underline{N}\left(\overline{f_{\psi}}\right)^{-}}{E\left[\left|\underline{T}_{A_{0}}\left(\overline{f}_{\psi}\right) + \underline{N}\left(\overline{f_{\psi}}\right)\right|^{2}\right]}$$

If $E[\underline{T}_A \underline{N}] = 0$, then

$$\underline{W}_{optimum}\left(\overline{f_{\psi}}\right) = \frac{1}{\left|\frac{E\left[\left|\underline{N}\left(\overline{f_{\psi}}\right)\right|^{2}\right]}{1 + \frac{E\left[\left|\underline{N}\left(\overline{f_{\psi}}\right)\right|^{2}\right]}{E\left[\left|\underline{T}_{A_{o}}\left(\overline{f_{\psi}}\right)\right|^{2}\right]}} \left(\cong \frac{1}{1 + \frac{N}{S}}\right)$$

Lec20.4-23 2/26/01

Sharpening Noisy Images

 $(\underline{W}_{opt}(\overline{f_{\psi}}) \Rightarrow$ wider beam (lower spatial resolution), lower sidelobes.

Can be used for restoration of blurred images of all types: photographs TV, $T_A(\overline{\psi}_A)$ maps, SAR images, filtered speech, etc.

Lec20.4-24 2/26/01