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1 Introduction

The inherent attributes of induction machines make them very attractive for drive applications.
They are rugged, economical to build and have no sliding contacts to wear. The difficulty with
using induction machines in servomechanisms and variable speed drives is that they are “hard to
control”, since their torque-speed relationship is complex and nonlinear. With, however, modern
power electronics to serve as frequency changers and digital electronics to do the required arithmetic,
induction machines are seeing increasing use in drive applications.

In this chapter we develop models for control of induction motors. The derivation is quite brief
for it relies on what we have already done for synchronous machines. In this chapter, however, we
will stay in “ordinary” variables, skipping the per-unit normalization.

2 Volts/Hz Control

Remembering that induction machines generally tend to operate at relatively low per unit slip, we
might conclude that one way of building an adjustable speed drive would be to supply an induction
motor with adjustable stator frequency. And this is, indeed, possible. One thing to remember is
that flux is inversely proportional to frequency, so that to maintain constant flux one must make
stator voltage proportional to frequency (hence the name “constant volts/Hz”). However, voltage
supplies are always limited, so that at some frequency it is necessary to switch to constant voltage
control. The analogy to DC machines is fairly direct here: below some “base” speed, the machine
is controlled in constant flux (“volts/Hz”) mode, while above the base speed, flux is inversely
proportional to speed. It is easy to see that the maximum torque varies inversely to the square of
flux, or therefore to the square of frequency.

To get a first-order picture of how an induction machine works at adjustable speed, start with
the simplified equivalent network that describes the machine, as shown in Figure 1

In Chapter 8 of these notes it is shown that torque can be calculated by finding the power
dissipated in the virtual resistance R2/s and dividing by electrical speed. For a three phase machine,
and assuming we are dealing with RMS magnitudes:

p R2
T = 2

e 3 |I2|
ω s

where ω is the electrical frequency and p is the number of pole pairs. It is straightforward to find
I2 using network techniques. As an example, Figure 2 shows a series of torque/speed curves for
an induction machine operated with a wide range of input frequencies, both below and above its
“base” frequency. The parameters of this machine are:
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Figure 1: Equivalent Circuit

Number of Phases 3
Number of Pole Pairs 3
RMS Terminal Voltage (line-line) 230
Frequency (Hz) 60
Stator Resistance R1 .06 Ω
Rotor Resistance R2 .055 Ω
Stator Leakage X1 .34 Ω
Rotor Leakage X2 .33 Ω
Magnetizing Reactance Xm 10.6 Ω

A strategy for operating the machine is to make terminal voltage magnitude proportional to fre-
quency for input frequencies less than the “Base Frequency”, in this case 60 Hz, and to hold voltage
constant for frequencies above the “Base Frequency”.
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Figure 2: Induction Machine Torque-Speed Curves

For high frequencies the torque production falls fairly rapidly with frequency (as it turns out,
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it is roughly proportional to the inverse of the square of frequency). It also falls with very low
frequency because of the effects of terminal resistance. We will look at this next.

2.1 Idealized Model: No Stator Resistance
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Figure 3: Idealized Circuit: Ignore Armature Resistance

Ignore, for the moment, R1. An equivalent circuit is shown in Figure 3. It is fairly easy to show
that, from the rotor, the combination of source, armature leakage and magnetizing branch can be
replaced by its equivalent circuit, as shown in in Figure 4.
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Figure 4: Idealized Equivalent

In the circuit of Figure 4, the parameters are:

V ′
Xm

= V
Xm + X1

X ′ = Xm||X1

If the machine is operated at variable frequency ω, but the reactance is established at frequency
ωB, current is:

V ′

I =
j(X ′

1 + X ω
2)ωB

+ R2

s

and then torque is

2 R2 3p |V ′|2 R2

T s
e = 3|I2| =

s ω (X ′

1 + X2)2 + (R2 )2
s
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Now, if we note that what counts is the absolute slip of the rotor, we might define a slip with
respect to base frequency:

ωr ωr ωB ωB
s = = = sB

ω ωB ω ω

Then, if we assume that voltage is applied proportional to frequency:

V ′ = V ′
ω

0 ωB

and with a little manipulation, we get:

3p |V ′ 2

0 |
2 R

sTe = B

ω (X ′ + X )2 + (R2 )2B 1 2 sB

This would imply that torque is, if voltage is proportional to frequency, meaning constant applied
flux, dependent only on absolute slip. The torque-speed curve is a constant, dependent only on the
difference between synchronous and actual rotor speed.

This is fine, but eventually, the notion of “volts per Hz” runs out because at some number of
Hz, there are no more volts to be had. This is generally taken to be the “base” speed for the drive.
Above that speed, voltage is held constant, and torque is given by:

3p |V ′|2 R2

s
T B

e =
ωB (X ′

1 + X2)2 + (R2

sB

)2

The peak of this torque has a square-inverse dependence on frequency, as can be seen from Figure 5.
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Figure 5: Idealized Torque-Speed Curves: Zero Stator Resistance
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2.2 Peak Torque Capability

Assuming we have a smart controller, we are interested in the actual capability of the machine. At
some voltage and frequency, torque is given by:

Te = 3|I2|
2 R2 3 p

= ω
|V ′|2 R2

s

s ((X ′

1 + X ω
2)(ωB

))2 + (R′

1 + R2

s
)2

Now, we are interested in finding the peak value of that, which is given by the value of R2s which
maximizes power transfer to the virtual resistance. This is given by the matching condition:

R2 ω
=

√

R′2
1 + ((X ′

1 + X2)( ))2
s ωB

Then maximum (breakdown) torque is given by:

3p
ω
|V ′|2 R′2 )( ω

1 + ((X ′

1 + X2 ω
))2

Tmax =

√

B

((X ′

1 + X2)(
ω

ωB
))2 + (R′ +

√

R′2 + ((X ′ + X )( ω 2
1 1 1 2 ωB

)) )2

This is plotted in Figure 6. Just as a check, this was calculated assuming R1 = 0, and the
results are plotted in figure 7. This plot shows, as one would expect, a constant torque limit region
to zero speed.
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Figure 6: Torque-Capability Curve For An Induction Motor

3 Field Oriented Control

One of the more useful impacts of modern power electronics and control technology has enabled
us to turn induction machines into high performance servomotors. In this note we will develop a
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Figure 7: Idealized Torque Capability Curve: Zero Stator Resistance

picture of how this is done. Quite obviously there are many details which we will not touch here.
The objective is to emulate the performance of a DC machine, in which (as you will recall), torque
is a simple function of applied current. For a machine with one field winding, this is simply:

T = GIf Ia

This makes control of such a machine quite easy, for once the desired torque is known it is easy to
translate that torque command into a current and the motor does the rest.

Of course DC (commutator) machines are, at least in large sizes, expensive, not particularly
efficient, have relatively high maintenance requirements because of the sliding brush/commutator
interface, provide environmental problems because of sparking and carbon dust and are environ-
mentally sensitive. The induction motor is simpler and more rugged. Until fairly recently the
induction motor has not been widely used in servo applications because it was thought to be ”hard
to control”. As we will show, it does take a little effort and even some computation to do the
controls right, but this is becoming increasingly affordable.

3.1 Elementary Model:

We return to the elementary model of the induction motor. In ordinary variables, referred to the
stator, the machine is described by flux-current relationships (in the d-q reference frame):

[

λdS L
= S M idS

λdR

] [

M LR

] [

idR

]

[

λqS

λqR

]

L
=

[

S M
M LR

] [

iqS

iqR

]
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Note the machine is symmetric (there is no saliency), and since we are referred to the stator,
the stator and rotor self-inductances include leakage terms:

LS = M + LS`

LR = M + LR`

The voltage equations are:

dλdS
vdS = − ωλqS + rSidS

dt
dλqS

vqS = + ωλdS + rSiqS
dt

dλdR
0 = − ωsλqR + rRidR

dt
dλqR

0 = + ωsλdR + rRiqR
dt

Note that both rotor and stator have “speed” voltage terms since they are both rotating with
respect to the rotating coordinate system. The speed of the rotating coordinate system is w with
respect to the stator. With respect to the rotor that speed is ωs = ω − ωm , where ωm is the rotor
mechanical speed. Note that this analysis does not require that the reference frame coordinate
system speed w be constant.

Torque is given by:

T e 3
= p (λdSiqS − λqSidS)

2

3.2 Simulation Model

As a first step in developing a simulation model, see that the inversion of the flux-current relation-
ship is (we use the d- axis since the q- axis is identical):

LR M
idS = λ

L LR −M2 dS −
S LSLR −M2

λdR

M LS
idR = λ

LR −M2 dS − λ
LS L LR −M2 dR

S

Now, if we make the following definitions (the motivation for this should by now be obvious):

Xd = ω0LS

Xkd = ω0LR

Xad = ω0M

X ′

d = ω0

(

M2

LS −
LR

)

the currents become:

ω0 Xad ω0
idS =

X ′
λdS − λdR

d Xk X ′
d d

Xad ω0 Xd ω0
idR =

X ′
λdS −

Xk d X ′
λdR

d d Xkd
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The q- axis is the same.
Torque may be, with these calculations for current, written as:

3 3 ω0Xad
Te = p (λdSiqS − λqSidS) = − p

′
(λdSλqR − λqSλdR)

2 2 XkdXd

Note that the usual problems with ordinary variables hold here: the foregoing expression was
written assuming the variables are expressed as peak quantities. If RMS is used we must replace
3/2 by 3!

With these, the simulation model is quite straightforward. The state equations are:

dλdS
= VdS + ωλqS −RSidS

dt
dλqS

= VqS − ωλdS −RSiqS
dt

dλdR
= ωsλqR −RRidR

dt
dλqR

= −ωsλdR −RSiqR
dt

dΩm 1
= (Te + Tm)

dt J

where the rotor frequency (slip frequency) is:

ωs = ω − pΩm

For simple simulations and constant excitaion frequency, the choice of coordinate systems is
arbitrary, so we can choose something convenient. For example, we might choose to fix the coordi-
nate system to a synchronously rotating frame, so that stator frequency ω = ω0. In this case, we
could pick the stator voltage to lie on one axis or another. A common choice is Vd = 0 and Vq = V .

3.3 Control Model

If we are going to turn the machine into a servomotor, we will want to be a bit more sophisticated
about our coordinate system. In general, the principle of field-oriented control is much like emu-
lating the function of a DC (commutator) machine. We figure out where the flux is, then inject
current to interact most directly with the flux.

As a first step, note that because the two stator flux linkages are the sum of air-gap and leakage
flux,

λdS = λagd + LS`idS

λqS = λagq + LS`iqS

This means that we can re-write torque as:

T e 3
= p (λagdiqS − λagqidS)

2
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Next, note that the rotor flux is, similarly, related to air-gap flux:

λagd = λdR − LR`idR

λagq = λqR − LR`iqR

Torque now becomes:

e 3 3
T = p (λdRiqS − λqRidS)− pLR` (idRiqS − iqRidS)

2 2

Now, since the rotor currents could be written as:

λdR M
idR = − idS

LR LR

λqR M
iqR = − iqS

LR LR

That second term can be written as:

1
idRiqS − iqRidS = (λdRiqS − λqRidS)

LR

So that torque is now:

T e 3
= p

(

LR`
1−

)

3 M
(λdRiqS − λqRidS) = p (λdRiqS − λqRidS)

2 LR 2 LR

3.4 Field-Oriented Strategy:

What is done in field-oriented control is to establish a rotor flux in a known position (usually this
position is the d- axis of the transformation) and then put a current on the orthogonal axis (where
it will be most effective in producing torque). That is, we will attempt to set

λdR = Λ0

λqR = 0

Then torque is produced by applying quadrature-axis current:

T e 3 M
= p Λ0iqS

2 LR

The process is almost that simple. There are a few details involved in figuring out where the
quadrature axis is and how hard to drive the direct axis (magnetizing) current.

Now, suppose we can succeed in putting flux on the right axis, so that λqR = 0, then the two
rotor voltage equations are:

dλdR
0 = − ωsλqR + rRIdR

dt
dλqR

0 = + ωsλdR + rRIqR
dt
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Now, since the rotor currents are:

λdR M
idR = − idS

LR LR

λqR M
iqR = − iqS

LR LR

The voltage expressions become, accounting for the fact that there is no rotor quadrature axis
flux:

dλdR
(

λdR M
0 = + rR − idS

dt LR LR

)

M
0 = ωsλdR − rR iqS

LR

Noting that the rotor time constant is

LR
TR =

rR

we find:

dλdR
TR + λdR = MidS

dt
M iqS

ωs =
TR λdR

The first of these two expressions describes the behavior of the direct-axis flux: as one would
think, it has a simple first-order relationship with direct-axis stator current. The second expression,
which describes slip as a function of quadrature axis current and direct axis flux, actually describes
how fast to turn the rotating coordinate system to hold flux on the direct axis.

Now, a real machine application involves phase currents ia, ib and ic, and these must be derived
from the model currents idS and iqs. This is done with, of course, a mathematical operation which
uses a transformation angle θ. And that angle is derived from the rotor mechanical speed and
computed slip:

θ =

∫

(pωm + ωs) dt

A generally good strategy to make this sort of system work is to measure the three phase currents
and derive the direct- and quadrature-axis currents from them. A good estimate of direct-axis flux is
made by running direct-axis flux through a first-order filter. The tricky operation involves dividing
quadrature axis current by direct axis flux to get slip, but this is now easily done numerically (as
are the trigonometric operations required for the rotating coordinate system transformation). An
elmentary block diagram of a (possbly) plausible scheme for this is shown in Figure 8.

In this picture we start with commanded values of direct- and quadrature- axis currents, corre-
sponding to flux and torque, respectively. These are translated by a rotating coordinate transfor-
mation into commanded phase currents. That transformation (simply the inverse Park’s transform)
uses the angle q derived as part of the scheme. In some (cheap) implementations of this scheme
the commanded currents are used rather than the measured currents to establish the flux and slip.

We have shown the commanded currents i∗a, etc. as inputs to an “Amplifier”. This might be
implemented as a PWM current-source, for example, and a tight loop here results in a rather high
performance servo system.
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Figure 8: Field Oriented Controller
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