6.728 Applied Quantum and Statistical Physics:

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

PROBLEM SET 8

Problem Set Out: 11/01/06
Problem Set Due: 11/8/06 at the beginning of class
Problem 8.1 A pair of two-level systems Do problem 19.2 in the text.

Problem 8.2 Spin 1/2 Matrices
Consider the three Pauli spin matrices σ_{i} and the identity matrix.

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(a) Argue that any two by two Hermitian matrix can be written as a linear combination of these four matrices. Consequently, write the Hamitonian

$$
\hat{H}=\left(\begin{array}{cc}
\bar{E}-\Delta & V \\
V^{*} & \bar{E}+\Delta
\end{array}\right)
$$

in terms of these 4 matrices.
(b) Show that $\sigma_{i} \sigma_{i}=I$, and $\sigma_{x} \sigma_{y}=i \sigma_{z}, \sigma_{y} \sigma_{z}=i \sigma_{x}$, and $\sigma_{z} \sigma_{x}=i \sigma_{y}$.
(c)The spin of an electron can be written as

$$
\mathbf{S}=\frac{\hbar}{2}\left(\sigma_{x} \mathbf{i}_{\mathbf{x}}+\sigma_{y} \mathbf{i}_{\mathbf{y}}+\sigma_{z} \mathbf{i}_{\mathbf{z}}\right)
$$

If the Hamiltonian is given by $\mu \mathbf{B} \cdot \mathbf{S}$, where B is the magnetic field, write out the Hamiltonian.
(d) The eigenvectors of the σ_{z} are $\binom{1}{0}$ and $\binom{0}{1}$. Find the eigenvectors for σ_{x} and σ_{y}.

