6.728 APPLIED QUANTUM and STATISTICAL MECHANICS

TWO-Level Formula

Consider the two level Hamiltonian:

$$
\begin{equation*}
\bar{E}=\frac{H_{11}+H_{22}}{2} \quad \text { and } \quad \Delta=\frac{H_{22}-H_{11}}{2} \tag{1}
\end{equation*}
$$

and $H_{12}=H_{21}^{*}=V$ with V real. Then the Hamiltonian with basis states u_{1} and u_{2} is

$$
\hat{H}=\left(\begin{array}{cc}
\bar{E}-\Delta & V \tag{2}\\
V^{*} & \bar{E}+\Delta
\end{array}\right) \quad \text { where } \quad H_{i j}=\left\langle u_{i}\right| \hat{H}\left|u_{j}\right\rangle
$$

with eigen energies

$$
\begin{equation*}
E_{-}=\bar{E}-\sqrt{\Delta^{2}+|V|^{2}} \quad \text { and } \quad E_{+}=\bar{E}+\sqrt{\Delta^{2}+|V|^{2}} \tag{3}
\end{equation*}
$$

with eigen vectors

$$
\begin{equation*}
\binom{c_{1}^{-}}{c_{2}^{-}}=\binom{\cos \theta}{\sin \theta} \quad \text { and } \quad\binom{c_{1}^{+}}{c_{2}^{+}}=\binom{-\sin \theta}{\cos \theta} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin 2 \theta=-\frac{V}{\sqrt{\Delta^{2}+V^{2}}} \quad \text { and } \quad \cos 2 \theta=\frac{\Delta}{\sqrt{\Delta^{2}+V^{2}}} \tag{5}
\end{equation*}
$$

The eigen functions can be written in terms of the original basis set of u_{1} and u_{2} as

$$
\begin{equation*}
\psi_{-}=\cos \theta u_{1}+\sin \theta u_{2} \quad \text { and } \quad \psi_{+}=-\sin \theta u_{1}+\cos \theta u_{2} \tag{6}
\end{equation*}
$$

If the system is originally in state $\Psi(x, 0)=u_{1}(x)$, which is not an eigen state of the system, then probabilities of being in state u_{2} and state u_{1} are

$$
\begin{equation*}
p_{2}(t)=\frac{1}{2} \frac{V^{2}}{\Delta^{2}+V^{2}}-\frac{1}{2} \frac{V^{2}}{\Delta^{2}+V^{2}} \cos 2 \sqrt{\Delta^{2}+V^{2}} t / \hbar \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}(t)=\frac{1}{2} \frac{2 \Delta^{2}+V^{2}}{\Delta^{2}+V^{2}}+\frac{1}{2} \frac{V^{2}}{\Delta^{2}+V^{2}} \cos 2 \sqrt{\Delta^{2}+V^{2}} t / \hbar \tag{8}
\end{equation*}
$$

