
Generalizations: Adding an extra parameter  
In the discussion of implementing the Fourier Transform and the Inverse Fourier 
Transform, ( )xΨ  and ( )A q , were always described as vectors, indexed by x and q 
respectively. In general, these each could have been described by a matrix, again, with a 
row index of x and q, but with a column index of some independent parameter, like time.  
 
For example,Ψ could have been a matrix. Each column could be for a different time 
instance:  
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then, applying the Fourier Transform procedures exactly as described previously, we 
would get a matrix ( , )A q t instead of the vector ( )A q  :  
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The most probable scenario is that we are given the initial wavepacket ( , 0)x tΨ = and 
wish to find the wave packet at time t>0. In this case we perform the Fourier Transform 
on a single column, and are returned a single column amplitude function. Then, we want 
to findΨ for many time instances. Using matrices instead of vectors, we can compute all 
the time instances at once. First, we setup a matrix A: 
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This is a matrix, with identical column. Each column is the expansion coefficients we 
computed from the Fourier transform ofΨ . We will put one column in the matrix for 
each future time instance we wish to computeΨ at.  



If we then similarly redefineς  to account for the time parameter as follows: 
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Now, if we perform array multiplication (element by element) onς and A we get:  
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and, if we multiply ( , )q A q tφ ⋅  , just like we did in the previous sections:  
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which is just  
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