Generalizations: Adding an extra parameter

In the discussion of implementing the Fourier Transform and the Inverse Fourier Transform, $\Psi(x)$ and $A(q)$, were always described as vectors, indexed by \mathbf{x} and \mathbf{q} respectively. In general, these each could have been described by a matrix, again, with a row index of \mathbf{x} and \mathbf{q}, but with a column index of some independent parameter, like time.

For example, Ψ could have been a matrix. Each column could be for a different time instance:

$$
\Psi=\left(\begin{array}{cccc}
\Psi\left(x_{1}, t_{1}\right) & \Psi\left(x_{1}, t_{2}\right) & \cdots & \Psi\left(x_{1}, t_{1}\right) \\
\Psi\left(x_{2}, t_{1}\right) & \Psi\left(x_{2}, t_{2}\right) & \cdots & \Psi\left(x_{2}, t_{1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\Psi\left(x_{n}, t_{1}\right) & \Psi\left(x_{n}, t_{2}\right) & \cdots & \Psi\left(x_{n}, t_{l}\right)
\end{array}\right)
$$

then, applying the Fourier Transform procedures exactly as described previously, we would get a matrix $A(q, t)$ instead of the vector $\vec{A}(q)$:

$$
A(q, t)=\left(\begin{array}{cccc}
A\left(q_{1}, t_{1}\right) & A\left(q_{1}, t_{2}\right) & \cdots & A\left(q_{1}, t_{1}\right) \\
A\left(q_{2}, t_{1}\right) & A\left(q_{2}, t_{2}\right) & \cdots & A\left(q_{2}, t_{l}\right) \\
\vdots & \vdots & \ddots & \vdots \\
A\left(q_{m}, t_{1}\right) & A\left(q_{m}, t_{2}\right) & \cdots & A\left(q_{m}, t_{l}\right)
\end{array}\right)
$$

The most probable scenario is that we are given the initial wavepacket $\Psi(x, t=0)$ and wish to find the wave packet at time $\mathbf{t > 0}$. In this case we perform the Fourier Transform on a single column, and are returned a single column amplitude function. Then, we want to find Ψ for many time instances. Using matrices instead of vectors, we can compute all the time instances at once. First, we setup a matrix A:

$$
\begin{aligned}
A & =\left(\begin{array}{c}
A\left(q_{1}\right) \\
A\left(q_{2}\right) \\
\vdots \\
A\left(q_{m}\right)
\end{array}\right) \cdot\left(\begin{array}{llll}
1 & 1 & \cdots & 1_{m}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
A\left(q_{1}\right) & A\left(q_{1}\right) & \cdots & A\left(q_{1}\right) \\
A\left(q_{2}\right) & A\left(q_{2}\right) & \cdots & A\left(q_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
A\left(q_{m}\right) & A\left(q_{m}\right) & \cdots & A\left(q_{m}\right)
\end{array}\right)
\end{aligned}
$$

This is a matrix, with identical column. Each column is the expansion coefficients we computed from the Fourier transform of Ψ. We will put one column in the matrix for each future time instance we wish to compute Ψ at.

If we then similarly redefine $\vec{\zeta}$ to account for the time parameter as follows:

$$
\vec{\zeta}=\left(\begin{array}{cccc}
e^{-i E_{1} t_{1} / \hbar} & e^{-i E_{1} t_{2} / \hbar} & \cdots & e^{-i E_{1} t_{l} / \hbar} \\
e^{-i E_{2} t_{1} / \hbar} & e^{-i E_{2} t_{2} / \hbar} & \cdots & e^{-i E_{2} t_{l} / \hbar} \\
\vdots & \vdots & \ddots & \vdots \\
e^{-i E_{m} t_{1} / \hbar} & e^{-i E_{m} t_{2} / \hbar} & \cdots & e^{-i E_{m} t_{l} / \hbar}
\end{array}\right)
$$

Now, if we perform array multiplication (element by element) on ς and A we get:

$$
A(q, t)=\left(\begin{array}{ccccc}
A\left(q_{1}\right) e^{-i t_{1} E_{1} / \hbar} & A\left(q_{1}\right) e^{-i t_{2} E_{1} / \hbar} & A\left(q_{1}\right) e^{-i i_{3} E_{1} / \hbar} & \cdots & A\left(q_{1}\right) e^{-i t_{1} E_{1} / \hbar} \\
A\left(q_{2}\right) e^{-i i_{1} E_{2} / \hbar} & A\left(q_{2}\right) e^{-i t_{2} E_{2} / \hbar} & A\left(q_{2}\right) e^{-i t_{3} E_{2} / \hbar} & \cdots & A\left(q_{2}\right) e^{-i t_{1} E_{2} / \hbar} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A\left(q_{m}\right) e^{-i i_{1} E_{m} / \hbar} & A\left(q_{m}\right) e^{-i t_{2} E_{m} / \hbar} & A\left(q_{m}\right) e^{-i t_{3} E_{m} / \hbar} & \cdots & A\left(q_{m}\right) e^{-i t_{1} E_{m} / \hbar}
\end{array}\right)
$$

and, if we multiply $\vec{\phi}_{\bar{q}} \cdot A(q, t)$, just like we did in the previous sections:

$$
=\left(\begin{array}{ccc}
\left(A\left(q_{1}, t_{1}\right) e^{i q_{1} x_{1}}+\cdots+A\left(q_{m}, t_{1}\right) e^{i q_{m} x_{1}}\right) & \cdots & \left(A\left(q_{1}, t_{l}\right) e^{i q_{1} x_{1}}+\cdots+A\left(q_{m}, t_{l}\right) e^{i q_{m} x_{1}}\right) \\
\left(A\left(q_{1}, t_{1}\right) e^{i q_{1} x_{2}}+\cdots+A\left(q_{m}, t_{1}\right) e^{i q_{m} x_{2}}\right) & \cdots & \left(A\left(q_{1}, t_{l}\right) e^{i q_{1} x_{2}}+\cdots+A\left(q_{m}, t_{l}\right) e^{i q_{m} x_{2}}\right) \\
\left(A\left(q_{1}, t_{1}\right) e^{i q_{1} x_{n}}+\cdots+A\left(q_{m}, t_{1}\right) e^{i q_{m} x_{n}}\right) & \cdots & \left(A\left(q_{1}, t_{l}\right) e^{i q_{1} x_{n}}+\cdots+A\left(q_{m}, t_{l}\right) e^{i q_{m} x_{n}}\right)
\end{array}\right)
$$

which is just

$$
\Psi(x, t)=\left(\begin{array}{cccc}
\Psi\left(x_{1}, t_{1}\right) & \Psi\left(x_{1}, t_{2}\right) & \cdots & \Psi\left(x_{1}, t_{l}\right) \\
\Psi\left(x_{2}, t_{1}\right) & \Psi\left(x_{2}, t_{2}\right) & \cdots & \Psi\left(x_{2}, t_{l}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\Psi\left(x_{n}, t_{1}\right) & \Psi\left(x_{n}, t_{2}\right) & \cdots & \Psi\left(x_{n}, t_{l}\right)
\end{array}\right)
$$

