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Seeing Atoms – the Scanning Tunneling Microscope


In 1983, Binnig and Rohrer and their co-workers1 reported a new type 
of microscope called the scanning tunneling microscope which permitted the 
imaging of features on the atomic scale. This exciting discovery has opened 
an entirely new field, generally referred to as scanning probe microscopy, 
in which many different physical mechanisms are exploited to gain views of 
matter at atomic dimensions. In this section, we explore the basic physics 
behind the scanning tunneling microscope. 

In the previous section, we noted (Eq. 8.21) that the probability of tun
neling through a rectangular barrier depends exponentially on the width of 
the barrier. Specifically, we noted that the transmission coefficient T (E) has 
the form 

T (E) ∝ e−αL (1) 

where L is the barrier width and where 
�

2m(V0 − E) 
α = (2)

h̄

for an electron of energy E impinging on a barrier of height V0. This exponen
tial dependence of tunneling probability on distance creates the opportunity 
to image atomic-scale features. 

Figure 1 shows to the left a highly schematic and exaggerated sketch 
of an atomically rough sharp tip brought into proximity with an atomically 
rough surface of a sample below. Without apology for the coarse artwork, one 
can recognize that there is clearly a point of closest approach between the tip 

1G Bining, H. Rohrer, C. Gerber and E. Weibel, Phys. Rev. Lett., 50, 120 (1983); See 
also their Nobel Laureate Address for 1986 at nobelprize.org 
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Actual case:  atomically rough Ideal case: smooth plane parallel surfaces

~ 0.5 nm

Figure 1: A highly schematic view, on the left, of an atomically rough tip in 
proximity to an atomically rough surface. On the right is shown an idealized 
one-dimensional equivalent with two perfectly flat parallel surfaces: some
thing that cannot be realized in practice but which can be analyzed using 
the methods developed so far. 

and the sample. Further, because of the exponential dependence of tunneling 
probability on distance, if there is to be tunneling between the two materials, 
most of the tunneling will occur at the point of closest approach. As the tip 
is moved laterally across the surface, this distance will vary and, hence, so 
will the tunneling current. In practice, as discussed below, an instrument 
is designed to maintain the amount of tunneling by moving the tip up and 
down as it is moved laterally. Either the variation in tunneling with lateral 
displacement or the vertical motion required to maintain a constant amount 
of tunneling can be used to image the atomic features of the sample. 

We cannot analyze the complex three-dimensional structure. Instead, we 
shall use a one-dimensional model, as shown on the right of Fig. 1, with 
two perfectly smooth planar parallel surfaces separated by a small gap on 
the order of 0.5 nm. We now need to connect this physical picture to the 
tunneling calculation of the previous section. 

0.1 A First Look at Metals 

Figure 2 shows a schematic representation of the electron states in two iden
tical metals separated by an air gap. The metal on the left might be the 
idealized tunneling tip while the right-metal might be the sample. The hori
zontal axis is position, while the vertical axis is electron energy. Our picture 
of a metal is that its electron states are those of particles in a very large 
box. These states form a quasi-continuum. The states are filled from lowest 
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Figure 2: Schematic energy-level diagram for two identical metals separated 
by an air gap. 

to highest following the Pauli exclusion principle, which states that each al
lowed electron state can be occupied by at most one electron. The number 
of filled states is determined by the electron density required by the metal 
valency. Thus the states are filled to some specific energy, called the Fermi 
level, but with a small transition zone of width ≈ 3kB T around the Fermi 
level, where kB is Boltzmann’s constant (1.38 × 10−23Joules/Kelvin) and T 
is the absolute temperature in Kelvins. In this transition zone, some of the 
states beneath the Fermi level are empty and some of the states above the 
Fermi energy are full. 

The Fermi level is located below the vacuum level by an amount called 
the work function. The vacuum level is the energy that an electron would 
require to escape from the metal.2 The work function, which is in the range 
2-5 eV for typical metals, is a measure of how tightly the electrons are bound 
in the metal. 

Looking again at Fig. 2, we notice that if there is to be tunneling, it 
will have to involve the states in the transition zone around the Fermi level 
because, by the Pauli exclusion principle, tunneling can occur only when 
an electron in an occupied state in one material can tunnel to an unoccu
pied state in the other material. This is, in fact, the case we studied in our 
one-dimensional tunneling analysis. An electron entering from the left and 
impinging on a barrier was not restricted by occupancy considerations from 

2More precisely, the work function is the energy that an electron would require to escape 
from the metal in the absence of electrostatic interactions with the remaining electrons 
and atoms in the metal. 
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tunneling across the barrier to the other side. Figure 3 illustrates this sit
uation. The horizontal arrows indicate tunneling from filled states on one 
material to empty states in the other material within a narrow transition 
zone about the Fermi level. In equilibrium, the amount of tunneling from 
left to right will exactly match that from right to left, so there is no net 
current in the structure. 

Figure 3: The sketch of Figure 2 showing equal and opposite tunneling be
tween the two metals from energies near the Fermi level. 

If we now apply a small voltage V between the two metals, the effect of 
this is to raise the Fermi level of one of the metals relative to the other, as 
shown in Fig. 4. 

Figure 4: Tunneling between the two metals when a voltage V is applied. 

In this non-equilibrium situation, the applied voltage shifts all of the 
electron states of one of the metals by an amount qV . The result is that 
there is now a significant unbalance in the occupancy. The left-hand metal, 
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with its higher Fermi level, has many occupied states at the same energy as, 
now, unoccupied states in the right-hand metal, but the corresponding states 
in the right-hand metal are now at an energy well below the Fermi level of 
the right-hand metal and these states are filled. Therefore, while there can 
be tunneling from left to right, from occupied to unoccupied, there cannot 
be much tunneling from right to left because the final states are heavily 
occupied. This unbalance results in a net electron current from the left to 
the right. This current can be measured with a picoammeter and used as the 
basis of an analytical instrument. 

The net tunneling current, in addition to depending on the details of the 
quantum states in the vicinity of the Fermi level, carries the same exponential 
dependence on gap width L as the basic tunneling probability. To show how 
sensitive this can be, consider a current (at some fixed applied voltage) of 
the form 

I = I0e
−αL (3) 

where I0 is a constant that depends on the specific metals and on the applied 
voltage. As a measure of sensitivity of this current to the tunnel distance, 
we calculate the following: 

ΔI ΔL 
I 

= −αL 
L 

(4) 

The factor αL, which is the ratio of the fractional change in current to the 
fractional change in gap width, as called the gauge factor of the tunneling 
phenomenon. For a typical value of V0 − E of 3eV and a gap spacing of 
0.5 nm, this gauge factor is 6.6. This means that a 10% change in current, 
usually a readily measurable change, corresponds to a change of gap by only 
1.6%. That is, L must change by only 8 picometers or 0.08 Angstroms – far 
less than a single atomic dimension – to product a 10% change in current. 
This sensitivity to positional variation is incredible! 

To convert this positional sensitivity into a scanning instrument, a sharp 
tip is mounted on a frame that can be scanned horizontally above a sample 
while simultaneously being controlled vertically so that the tip-to-sample 
distance can be continuously varied to maintain constant current. In this 
configuration, the required vertical motion of the tip as a function of the 
lateral position forms an image that matches the atomic-scale topography of 
the surface. 
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