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Chapter 1 

Two-State System 

1.1	 Two-State Hamiltonian 

The wave function for a two state system can be written as a linear combination of two 
basis states 

ψ(x, t) = c1(t)φ1(x) + c2(t)φ2(x)	 (1.1) 

where φ1(x) and φ2(x) are any complete basis states for the system. In particular, we can 
take the two basis states to be orthonormal so that 

�φi(x)|φj (x)� = δij	 (1.2) 

The time dependent coefficients satisfy the Schrödinger equation in matrix form 

d 
� 

c1(t) 
� � 

H11 H12 
� � 

c1(t) 
�

ih̄ =	 . (1.3)
dt c2(t) H21 H22 c2(t) 

The matrix elements are given by 

Hij = �φi(x)|Ĥ|φj (x)� (1.4) 

1.2	 Stationary Solutions: Eigen Functions and Eigen Ener
gies 

To find the stationary solutions (the eigen vectors) which are states of constant energy, so 
that the eigen functions are of the form 

� 

c
c

2

1

(
(
t
t
)
) 
� 

= e−iEt/h̄ 
� 

c
c

2

1 
�	

(1.5) 

Then the time-independent coefficients and energies are given by 

� 
H11 H12 

� � 
c1 

� 

= E 
� 

c1 
� 

(1.6)
H21 H22 c2 c2 

3 



4 CHAPTER 1. TWO-STATE SYSTEM 

There are two eigen energies given by the solutions to the determinant 
����
H11 − E H12 

���� = 0 . (1.7)
H21 H22 − E 

Recall the fact that H12 = H∗ , and we find21

�2H11 + H22 

�� 
H22 − H11

E = + 2 (1.8)− 2 
− 

2 
|H12|

�2 

E+ = 
H11 +

2 
H22 + 

�� 
H22 −

2 
H11 + |H12|2 (1.9) 

Substitution of the eigen energies in the matrix equation (Eqn. 1.6) gives 
� 

H11 H12 
� � 

c1
± � � 

c1
± � 

H21 H22 2 
= E± 

2 
(1.10)

c± c±

which leads to 
+ (H22 − E )c± = 0 (1.11)H21c

±
1 ± 2 

which results in the normalized solutions 
� 

c1
± � 

1 
� 

1 
� 

c±2 
= �

1 + 
� 

E±
H
−
21 
H22 

� 
E±

H
−
21 
H22 

(1.12) 

The algebra can be simplified by letting 

E ¯ = 
H11 + H22 and Δ = 

H22 − H11 (1.13)
2 2 

and H12 = H∗ = V . Then21 

Ĥ = 
� 

E ¯ − Δ V 
� 

(1.14)
V ∗ E ¯ + Δ 

and 

E− = E ¯ − 
�

Δ2 + |V |2 (1.15) 

E+ = E ¯ + 
�

Δ2 + |V |2 (1.16) 

with eigen vectors 
� 

c1
− � 

=
1 

� 
Δ + 

√
Δ2 + V 2 � 

= 
� 

cos θ 
� 

(1.17)
c−2 

� 

V 2 + 
�
Δ + 

√
Δ2 + V 2

�2 −V sin θ 

and 
+� 

c 
� 

1 
� −Δ + 

√
Δ2 + V 2 � � − sin θ 

�
1 
+ = = (1.18)

c2 
� 

V 2 + 
�
−Δ + 

√
Δ2 + V 2

�2 +V cos θ 



� 

5 1.2. STATIONARY SOLUTIONS: EIGEN FUNCTIONS AND EIGEN ENERGIES 

Figure 1.1: The eigen energy as a function of varying the coupling matrix element V . The 
wave functions are also indicated. 

where 
V Δ

sin 2θ = −√
Δ2 + V 2 

and cos 2θ = √
Δ2 + V 2 

. (1.19) 

Figs. 1.1 and 1.2 illustrate the eigen functions and the energies. 
In summary, the eigen functions can be written in terms of the original basis set of φ1 

and φ2 as 
ψ− = cos θ φ1 + sin θ φ2 (1.20) 

and 
ψ+ = − sin θ φ1 + cos θ φ2 (1.21) 

where 
V Δ

sin 2θ = −√
Δ2 + V 2 

and cos 2θ = √
Δ2 + V 2 

(1.22) 

and, for convenience, Δ = (H22 − H11)/2 and V = V12 are taken as real. Also, we define 
the average unperturbed energy as E ¯ = (H22 + H11)/2 and the energy difference as h̄Ω = 
2
√

Δ2 + V 2, so that the eigen energies can be written as 

E = E ¯ � h̄Ω/2 (1.23) 

The general solution for the wave function at some time t, ψ(t), is found from knowledge 
of the initial wave function ψ(0), by writing ψ(0) in terms of the eigen wave functions of 
the initial system ψ and ψ+, and then evolving the wave function as − 

ψ(t) = c−ψ−e−iE−t/h̄ + c+ψ+e +iE+t/h̄ , (1.24) 

where c− = �ψ−|ψ(0)� and c+ = �ψ+|ψ(0)�. 

Figure is blank due to unavailable original.



6 CHAPTER 1. TWO-STATE SYSTEM 

Figure 1.2: The eigen energy as a function of varying the energy difference matrix element 
Δ. The wave functions are also indicated. 

Oscillations between states 

Suppose the system is originally in state Ψ(x, 0) = φ1(x), which is not an eigen state of the 
system. Then c− = cos θ and c+ = − sin θ. Hence, 

ψ1(t) = 
�
cos2 θ e−iE−t/h̄ + sin2 θ e−iE+t/h̄

� 
φ1 + sin θ cos θ 

�
e−iE−t/h̄ − e−iE+t/h̄

� 
φ2 . (1.25) 

The probability of being in state 2 is 

p2(t) = 4 sin2 θ cos2 θ sin2 
�

Δ2 + V 2 t/h̄ (1.26) 

Use that 2 sin θ cos θ = sin2 2θ, and 

p2(t) = 
V 2 

sin2 
�

Δ2 + V 2 t/h̄ (1.27)
Δ2 + V 2


Therefore, we can write


p2(t) = 
1
2 Δ2 

V 
+ 

2 

V 2 − 
1
2 Δ2 

V 
+ 

2 

V 2 cos 2
�

Δ2 + V 2 t/h̄ (1.28) 

and 

p1(t) = 
1 2Δ2 + V 2 

+
1 V 2 

cos 2
�

Δ2 + V 2 t/h̄ (1.29)
2 Δ2 + V 2 2 Δ2 + V 2 

Hence the dynamics of the system is that one state oscillates into the other state with 
frequency 

Ω = 2
�

Δ2 + V 2/h̄ (1.30) 

Figure is blank due to unavailable original.



7 1.2. STATIONARY SOLUTIONS: EIGEN FUNCTIONS AND EIGEN ENERGIES 

Figure 1.3: Probabilities as a function of time states 1 and 2, for given values of Δ/V , note 
that time is in units of h̄/V . 

while the time-averaged the probability in each state is 

1 2Δ2 + V 2 1 V 2 

�p1� = 2 Δ2 + V 2 and �p2� = 
2 Δ2 + V 2 (1.31) 

These probabilities are shown in Fig. 1.3 
In the case with Δ = 0 the eigenvectors are determined by θ; in this limit, we obtain 

1 
cos θ = sin θ = (1.32)√

2 

This is equivalent to the statement that the new states ψ and ψ+ are made up of equal −
amounts of the original basis states φ1 and φ2. In this limit, the probabilities become 

2 h̄p1 −→ cos
|V|t 

= 
1 + cos (2|V|t ) 

(1.33)
¯ 2h 

and 

p2 −→ sin2 |V|t = 1 − cos (2|
h̄
V|t ) 

(1.34)
¯ 2h 

The transfer of probability between states φ1 and φ2 now becomes total. The frequency 
of transitions, Ω = 2 V /h̄, is now determined completely by the strength of the coupling | |
|V|; this is an important limit that has observable and useful consequences. (Note that the 
frequency at which the probability changes is twice that of the frequency of the probability 
amplitudes, since the probability is the square of the amplitudes.) 

For example, When 

Ωt =
2|

h̄

V|t 
= π (1.35) 

Figure is blank due to unavailable original.
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then p1(t) = 0 and p2(t) = 1, so that the state has completely changed from the lower state 
to the upper state. The sequence is often called a π-pulse. If we call the lower state |0�
and the upper state |1�, then we can say that the π-pulse has changed the state |0� to the 
state |1�. If we further associate a logical “0” with |0� and a logical “1” with |0�, then the 
π-pulse can be said to implement a NOT logical operation. Indeed if the initial state were 
|1� then the π-pulse would have converted it into the state |0�. Associating logical states 
with quantum states forms the basis for quantum logic and quantum computation. The 
physical system that embodies these two states is referred to as a quantum bit or a qubit. 

In general there are other logical operations that can be done on the two state sys
tem. We now discuss how these logical state operations can be identified with a quantum 
mechanical operator. 

1.3 Evolution as a Unitary Operator 

In the previous section a solution for the wave function at some time t, ψ(t), was found 
from knowledge of the initial wave function ψ(0), by writing ψ(0) in terms of the eigen wave 
functions of the initial system ψ and ψ+, and then evolving the wave function − 

ψ(t) = c−ψ−e−iE−t/h̄ + c+ψ+e +iE+t/h̄ , (1.36) 

where c− = �ψ−|ψ(0)� and c+ = �ψ+|ψ(0)�. The eigen functions can be written in terms of 
the original basis set of φ1 and φ2 as 

ψ− = cos θ φ1 + sin θ φ2 (1.37) 

and 
ψ+ = − sin θ φ1 + cos θ φ2 (1.38) 

where 
V Δ

sin 2θ = −√
Δ2 + V 2 

and cos 2θ = −√
Δ2 + V 2 

(1.39) 

and, for convenience, Δ = (H22 − H11)/2 and V = V12 are taken as real. Also, we define 
the average unperturbed energy as E ¯ = (H22 + H11)/2 and the energy difference as h̄Ω = 
2
√

Δ2 + V 2, so that the eigen energies can be written as 

E = E ¯ � h̄Ω/2 (1.40) 

For example, it was shown that if the initial state is ψ(0) = φ1, then 

ψ1(t) = 
�
cos2 θ e−iE−t/h̄ + sin2 θ e−iE+t/h̄

� 
φ1 + sin θ cos θ 

�
e−iE−t/h̄ − e−iE+t/h̄

� 
φ2 . (1.41) 

Similarly, if the initial state is ψ(0) = φ2, then 

ψ2(t) = 
�
sin2 θ e−iE−t/h̄ + cos2 θ e−iE+t/h̄

� 
φ2 + sin θ cos θ 

�
e−iE−t/h̄ − e−iE+t/h̄

� 
φ1 . (1.42) 

In general, if the initial state is any arbitrary state, ψ(0) = aφ1 + bφ2, then the time 
dependent state is simply ψ(t) = aψ1(t)+bψ2(t), which in terms of φ1 and φ2 is a complicated 
expression. To make the solution more compact, we denote the wave function as 

ψ(t) = c1(t)φ1 + c2(t)φ2 (1.43) 
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and write the state as 

|ψ(t)� = 
� 

c
c

2

1

(
(
t
t
)
) 
� 

, (1.44) 

Then by combining the above equations, we find 

� 
c1(t) 

� � 
a 

� 

c2(t)
= U(t) 

b
. (1.45) 

where the evolution matrix is 

Et/h̄ 
� 

cos2 θeiΩt/2 + sin2 θe−iΩt/2 sin θ cos θ(eiΩt/2 − e−iΩt/2) 
�

U(t) = e−i ¯

sin θ cos θ(eiΩt/2 − e−iΩt/2) sin2 θeiΩt/2 + cos2 θe−iΩt/2 . (1.46) 

The matrix U(t) can be further simplified by taking the zero of energy to be Ē, (that is, 
the overall phase factor does not enter in evaluating any physical state), 

� 
cosΩt/2 + i cos 2θ sin Ωt/2 i sin 2θ cosΩt/2 

�
U(t) = . (1.47)

i sin 2θ cosΩt/2 cos Ωt/2 − i cos 2θ sinΩt/2 

The evolution matrix has the interesting property that U(t)U †(t) = 1, that is U−1(t) = 
U(t)† and such a matrix is known as a unitary matrix. Hence, we say that the evolution is 
unitary. 

The property of unitary evolution is, in fact, general. If some Ψ(t) = U(t)Ψ(0), 
and the normalization of the wave function remains constant during its evolution, then 
�Ψ(0)|Ψ(0)� = �Ψ(t)|Ψ(t)�. But since 

�Ψ(t)|Ψ(t)� = �Ψ(0)U(t)|U(t)Ψ(0)� = �Ψ(0)(U(t)†U(t))Ψ(0)� (1.48) 

we must demand that U−1(t) = U †(t). 
Now let’s see how to write the NOT operation in terms of a matrix operator. Recall that 

the operation occurred when Δ = 0 so that Ω = 2 V /h̄ and sin 2θ = and cos 2θ = 0. | | −V 
For simplicity, we take an attractive potential V . At this point, = −|V |

U(t) = 
� 

cos |V |t/h̄ i sin |V |t/h̄
� 

(1.49)
i sin V t/h̄ cos V t/h̄| | | |

What was needed for a π-pulse is that such that Ω = 2 V t/h̄ = π. (Again the relevant | |
frequency is for the probability and not the probability amplitudes.) The evolution matrix 
becomes � 

0 i 
�

Uπ = . (1.50)
i 0 

Now let Uπ operate on the logical qubit states, 
� 

1 
� � 

0 
� � 

0 
� � 

1 
�

Uπ = i and Uπ = i (1.51)
0 1 1 0 

or equivalently, 
Uπ|0� = i|1� and Uπ|1� = i|0� (1.52) 
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Figure 1.4: E − E ¯ vs. Delta 

Therefore, we can identified the NOT operator as 

� 
0 1 

�
NOT = −iUπ = (1.53)

1 0 

What one would like to do is to start the state in the ground state |0�, and then after 
some operation, keep it in a state such that the probability of it being in the new state 
remains the same in time. One way to accomplish this is to consider the energy eigenvalues 
as a function of the energy difference Δ as shown in Fig. 1.4. When Δ = 0 the eigen energies 
are −|V | and |V | with respective eigen states of 1

� 
1 
� 

and 1
� 

−
1
1 

�
. When Δ � |V |,√

2 1 
√

2 

then the eigen energies are −Δ and Δ with respective eigen states 
� 

1 
� 

and 
� 

0 
�
. In many 

0 1 
quantum systems the value of Δ corresponds to the classical energy difference of two states 
and it can be controlled. For example, in a system with two small capacitors through which 
electrons can also tunnel, the energy difference Δ between states can be changed rapidly 
by changing the applied voltage 1 . In systems with loops of superconducting Josephson 
junctions, Δ can be changed rapidly by changing the magnetic flux through the loop. 2 

To perform the NOT operation, start the system with Δ � |V |, so that the ground 
state is |0�. Then rapidly reduce Δ to zero, and let the system evolve there for the π-pulse 
duration tπ, and then change Δ � |V | so that the system will evolve in time with the eigen 
states 0� and 1� retaining the same probability. For example, after the full operation the | |

e−iΔ(t−tπ )/h̄wave function will evolve as |ψ(t)� = |1�. The system then remains in the |1�
state. 

1Y. Nakamura, Y.A. Pashkin, J.S. Tsai, “ Coherent control of macroscopic quantum states in a single-
Cooper-pair box” Nature 398, 786—788, (1999). 

2Caspar H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. 
Orlando, Seth Lloyd, and J. E. Mooij, “Quantum Superposition of Macroscopic Persistent-Current States,” 
Science, 290, 773 (2000). Also, Science 285, 1036 (1999); and J. R. Friedman, Vijay Patel, W. Chen, S. 
K. Tolpygo and J. E. Lukens, “Quantum Superposition of Distinct Macroscopic States,” Nature 406, p.43, 
(2000). 

Figure is blank due to unavailable original.



1.4. DENSITY OPERATOR APPROACH 11 

Another operation is the Hadamard transformation, UH , 

1 
UH |0� = 

2
(|0� + |1�) (1.54) 

which takes the |0� state and produces an equally weighted combination of states. The 
Hadamard operation is important because it allows one to produce a linear combination of 
states, to which a new logical operation can be performed on both “bits” at the same time. 
It is this quantum parallelism with underlies the speed up for some operations in quantum 
computation. 

How are we to produce UH ? First start the system in the |0� by setting Δ � |V |
and letting the system settle to the ground state. (Here we assume that if we wait a long 
enough time known as the relaxation time the system will settle to its ground state due to 
dissipation through its interaction with other states in its environment. We will discuss this 
process in more detail in Section 25.9.) Then quickly change Δ = 0 and let the system evolve 
for a Ωt1 = π/2 which is known as as π/2-pulse. The pulse occurs in a time t1 = πh/¯ 4 V ,| |
for which 

1 
� 

1 i 
�

UΔ=0(t1) = √
2 i 1 

(1.55) 

The state is now √1
2 

� 
1 
i 

�
. Now switch the state back to Δ � |V |, and let it evolve for a 

time t2 = π¯ Δh/4 , for which | |
1 

� 
1 + i 0 

�
UΔ�|V |(t2) = √

2 0 1 − i 
(1.56) 

so that the state becomes 

1 + i 
� 

1 
� 

1 + i 
ψ(t1 + t2) = 

2 1
=

2
(|0� + |1�) (1.57) 

which to within a phase factor is the desired state. Finally, note that the result is the same 
as cascading the operations, 

|ψ(t1 + t2)� = UΔ�|V |(t2)UΔ=0(t1)|0� (1.58) 

so that processes that builds up more complex logical operations (or evolution) can be 
represented by a product of unitary transformations which is itself a unitary transformation. 

1.4 Density Operator Approach 

The two-state system has given us two ways to envision the time-dependence of the wave 
function. First by solving the differential equation in time and matching boundary con
ditions, and second by finding the time-evolution operator as a matrix which propagates 
the coefficients basis states in time. In both cases the physical quantities of interest are 
usually the average values of operators, such as position or momentum or energy. A third 
method is now presented which focuses directly on the coefficients used in calculating the 
average values. This method, known as the density matrix approach is useful is solving 
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some problems, but more importantly, it will be used in latter chapters when statistical 
mechanics is discussed and when dissipation is needed to describe a quantum system. 

In terms of the basis states φ1 and φ2, the wave function is 

ψ(t) = c1(t)φ1 + c2(t)φ2 . (1.59) 

The average value of any operator Ô can be written as 

�Ô� = c1(t)c1
∗(t) �φ1|Ô|φ1� + c2(t)c1

∗(t) �φ1|Ô|φ2� 
+ c1(t)c∗2(t) �φ2|Ô|φ1� + c2(t)c2

∗(t) �φ2|Ô|φ2� (1.60) 

Again we denote the wave function as a column vector and write the state as 

|ψ(t)� = 
� 

c
c

2

1

(
(
t
t
)
) 
� 

. (1.61) 

The density matrix is then defined as 

ρ̂ = |ψ(t)��ψ(t)| = 
� 

c
c

2

1

(
(
t
t
)
) 
� 

( c1
∗(t) c∗2(t) ) (1.62) 

which in terms of the coefficients is 

ρ̂ = 
� 

c
c

2

1

(
(
t
t
)
)
c
c
∗
1

∗
1

(
(
t
t
)
) 

c
c

2

1

(
(
t
t
)
)
c
c
∗
2

∗
2

(
(
t
t
)
) 
� 

(1.63) 

The density matrix then satisfies ρ11 + ρ22 = 1 and ρ∗ = ρ21. Recall that the operator Ô12 
can be represented as the matrix 

Ô = 
� �φ1|O

ˆ
ˆ|φ1� �φ1|O

ˆ
ˆ|φ2� � 

(1.64)�φ2|O|φ1� �φ2|O|φ2� 
The average value of the operator can then be written as the trace of the matrix product 
as 

�Ô� = tr 
�
ρ̂ Ô

� 
. (1.65) 

The trace is the sum of the diagonal components of a matrix, tr(A) = 
�

i Aii 

The equations for time dependence of elements of the density matrix can be found 
explicitly. With the chain rule, 

d
ρ̂ = 

� 
d 

� 
c1(t) 

�� 

( c∗(t) c∗(t) ) + 
� 

c1(t) 
� 

d 
( c∗(t) c∗(t) ) . (1.66)

dt dt c2(t) 1 2 c2(t) dt 1 2

With the use of Schrödinger’s equation 

ih̄
d 

� 
c1(t) 

� 

= Ĥ
� 

c1(t) 
� 

and − ih̄
d 

( c1
∗(t) c∗2(t) ) = ( c∗1(t) c2

∗(t) ) Ĥ (1.67)
dt c2(t) c2(t) dt 

one finds 
d

ρ̂ = − 
1 �

ρ,̂ Ĥ
� 

. (1.68)
dt ih̄ 
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Note the sign difference between this relationship and Ehrenfest’s theorem. 
Let’s consider the general Hamiltonian written as 

In principle, this is a system of 8 equations for 8 real unknowns, the real and imaginary


ˆ
� 

E ¯ − Δ 
H = 

V ∗ 
V 

� 

E ¯ + Δ 
(1.69) 

Eqn. 2.5 gives 

d 
� 

ρ11 

dt ρ21 

ρ12 
� � 

ρ12V ∗ − ρ21V 
ρ22 (ρ22 − ρ11)V − 2ρ21Δ 

= 
(ρ11 − ρ22)V + 2ρ12Δ 

� 

ρ21V − ρ12V ∗ (1.70) 

parts of each ρij . But since ρ11 is real, ρ22 = 1 − ρ11, and ρ12 = ρ∗ , there are only three 21

independent real variables. One useful set of the three independent real quantities is 

N(t) = ρ22 − ρ11 (1.71) 

and 
Q(t) = ρ21 + ρ12 (1.72) 

and 
1 

P (t) = (ρ21 − ρ12) . (1.73)
i 

Here N(t) is the population difference between the upper and the lower states. The real 
part of the off-diagonal part of the density matrix is Q(t) and the imaginary part is P (t). 

The equations of motion for each of these are 

d 1 
N(t) = − 

h 
{Q(t)(V − V ∗) + iP (t)(V + V ∗)} (1.74)

dt i¯

and 
d 1 

Q(t) = ωoP (t) + N(t)(V − V ∗) (1.75)
dt ih̄ 

and 
d 1 

P (t) = −ωoQ(t) + N(t)(V + V ∗) (1.76)
dt h̄ 

where ωo = 2Δ/h̄. These three coupled equations are known as the Bloch Equations. For 
completeness, the average value of the operator is 

�Ô� = 
2
1 ��φ1|Ô|φ1� + �φ2|Ô|φ2�

� 
+ 

2
1 ��φ2|Ô|φ2� − �φ1|Ô|φ1�

� 
N(t) (1.77) 

+ Q(t)Re 
�
�φ1|Ô|φ2�

� 
+ iP (t)Im 

�
�φ1|Ô|φ2�

� 

Let’s solve the above three coupled Bloch equations for the case where V is real and the 
initial values of N(0), Q(0) and P (0) are known. The equations become 

d 2V 
N(t) = − P (t) (1.78)

dt h̄ 

and 
d 

Q(t) = ωoP (t) (1.79)
dt
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and 
d 2V 

P (t) = −ωoQ(t) + N(t) . (1.80)
dt h̄ 

Taking the time derivative of the equation for P (t), one finds 

d2 

P (t) = −Ω2P (t) (1.81)
dt2 

where � � 
2V 

�2 

Ω = ω2 +
¯

. (1.82)o h 

Therefore, P (t) is a sum of sinusoids at frequency Ω. Therefore, to match the initial 
condition on P (t) and its derivative (Eqn. 1.80), 

P (t) = P (0) cos Ωt + 
� 
2
¯
V

N(0) − 
ω

Ω 
o 
Q(0)

� 

sinΩt . (1.83)
hΩ 

Now Q(t) and N(t) can be found by integrating Eqns. 1.79 and 1.78 to give 

Q(t) = 
ωoP (0) 

sin Ωt − 
ωo 

� 
2V

N(0) − 
ωo 

Q(0)
� 

(cosΩt − 1) + Q(0) . (1.84)
Ω Ω h̄Ω Ω 

and 

N(t) = − 
2V P (0) 

sin Ωt +
2V 

� 
2V

N(0) − 
ωo 

Q(0)
� 

(cosΩt − 1) + N(0) . (1.85)
¯ ¯ h̄Ω ΩhΩ hΩ 

As an example, let the wave function is initially in the φ1 state that is, 
� 

1 
�

, then 
0 

N(0) = −1, Q(0) = 0 and P (0) = 0. Furthermore, let Δ = 0 so Ω = 2V/h̄, then 

N(t) = − cos 2V t/h̄ and P (t) = − sin 2V t/h̄ and Q(t) = 0 . (1.86) 

Equivalently, c1(t) 2 = cos2 V t/h̄ and c2(t) 2 = sin2 V t/h̄ as expected for the states to | | | |
oscillate fully back and forth at the Δ = 0 point. 

1.5 Two-level system with dynamical coupling 

The dynamics of the two level system are much richer in the event that the coupling between 
the states is time-dependent. We are only able to get exact solutions for a simple sinusoidal 
potential. In general, we are no longer able to obtain exact solutions as above, since the 
equations are much more difficult to solve. Yet an understanding of the resulting dynamics 
is important for applications in a variety of different areas, including NMR, laser physics, 
quantum information, and other applications where the simple models are relevant. We will 
first recall the equation of motion for the density matrix approach and solve the sinusoidal 
driving problem. Then we will discuss the solutions for the wave functions and the unitary 
evolution matrix. Lastly, we will make some observations about the general time-dependent 
problem. 
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1.5.1 Including the dynamical coupling 

As before we denote the wave function as a linear combination of basis states 

ψ(t) = c1(t)φ1 + c2(t)φ2 

where the time dependent coefficients satisfy the matrix equation 

ih̄ 
d 
dt 

� 
c1(t) 
c2(t) 

� 

= 
� ¯ E − Δ V (t) 

V ∗(t) ¯ E + Δ 

� � 
c1(t) 
c2(t) 

� 

. 

(1.87) 

(1.88) 

The dynamics of the system can also be written in terms of the time evolutions of the 
density matrix (Eqn. 1.70), or equivalently in terms of the three independent real variable 
as the Bloch equations 

d 1 
N(t) = − 

h 
{Q(t)(V − V ∗) + iP (t)(V + V ∗)} (1.89)

dt i¯

and 
d 1 

Q(t) = ωoP (t) + N(t)(V − V ∗) (1.90)
dt ih̄ 

and 
d 1 

P (t) = −ωoQ(t) + N(t)(V + V ∗) (1.91)
dt h̄ 

where ωo = 2Δ/h̄. We e can also solve the problem with the other methods of finding the 
equations of motion for the coefficients of the wave functions and also finding the unitary 
evolution operator. However, we will first focus on solving the problem with the Bloch 
equations because in this case these equations can be mapped onto the well-known problem 
in classical dynamics of a magnetic moment in a magnetic field. Then we will comment 
briefly on the other two methods, leaving the detail of these two methods to be worked out 
as problems. 

1.5.2 Sinusoidal driving potential 

Consider the simple, but instructive case, of applying to the two-level system a sinusoidal 
potential V (t) = V eiωt, where V is real. This simulates a case of two energy levels separated 
by energy 2Δ = h̄ωo excited by a radiation field at frequency ω. We expect that we can 
cause transitions between the two levels if the driving frequency is equal to or near the 
energy difference. The Bloch equations become 

d 
dt

Q(t) = ωo P (t) + 
2V 
h̄ 

sin ωt N(t) (1.92) 

and 
d 
dt 

P (t) = −ωo Q(t) + 
2V 
h̄ 

cos ωt N(t) (1.93) 

and 
d 
dt 

N(t) = − 
2V 
h̄ 

cos ωt P (t) − 
2V 
h̄ 

sin ωt Q(t) (1.94) 
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These coupled equations can be reduced to the form of the previous time independent 
problem by the following. Define the vectors 

M(t) = Q(t)ix + P (t)iy − N(t)iz (1.95) 

and 
2V 

γB(t) = − (cos ωtix − sin ωtiy) + ωoiz . (1.96)
h̄ 

Then the Bloch equations can be written as 

d 
M(t) = M(t) × γB(t) . (1.97)

dt 

This is just the equation for the dynamics of the magnetization in the presence of a static 
magnetic field in the z-directions and an oscillating field in the xy-plane. This equation 
is best solved by going to reference frame which rotates with frequency −ω about the z-
axis. The time derivative of any vector is its time derivative in the rotating frame plus the 
oscillating part, that is, 

d ∂
M(t) = M�(t) − ωiz × M�(t) . (1.98)

dt ∂t 

where M�(t) is the vector in the rotating frame 

M�(t) = Q�(t)i�x + P �(t)iy
� − N �(t)iz . (1.99) 

Also in the rotating frame 
2V 

γB�(t) = − 
h̄ 

i�x + ωoiz . (1.100) 

Combining the above equations, we find in the rotating frame 

∂ 
�
2V 

� 

∂t 
M�(t) = M�(t) × 

h̄ 
i� + (ωo − ω)iz . (1.101)x 

This yields the three equations 

∂ 
Q�(t) = (ωo − ω)P �(t) (1.102)

∂t

and 
∂ 2V 

P �(t) = −(ωo − ω)Q�(t) + N �(t) . (1.103)
∂t h̄ 

and 
∂ 2V 

N �(t) = − P �(t) . (1.104)
∂t h̄ 

These three equations are of the same form as the time independent problem given by 
Eqns. 1.79, 1.80, and 1.78, but with ωo − ω replacing ωo. Therefore, the solutions for Q�(t), 
P �(t), and N �(t) are the same as for the Eqns. 1.4, 1.83, and 1.85, 

P (t) = P (0) cos Ωt + 
� 

h̄

2V 
Ω 

N(0) − 
ωo 

Ω
− ω

Q(0)
� 

sinΩt . (1.105) 
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and 

Q�(t) = 
(ωo −

Ω 
ω)P (0) 

sin Ωt + 
ωo 

Ω
− ω 

� 
2
h̄

V 
Ω 

N(0) − 
ωo 

Ω
− ω

Q(0)
� 

(cosΩt − 1) + Q(0) . 

(1.106) 
and 

N (t) = − 
2V P (0) 

sin Ωt +
2V 

� 
2V

N(0) − 
ωo − ω

Q(0)
� 

(cos Ωt − 1) + N(0) (1.107)�
h̄Ω h̄Ω h̄Ω Ω 

and � � 
2V 

�2 

Ω = (ωo − ω)2 + . (1.108)
h̄ 

To express the solution in the lab (non-rotating frame), recall that 

M�(t) = Q�(t)ix + P �(t)iy − N �(t)iz (1.109) 

and 
i�x = cos ωt ix − sin ωt iy and i�y = sin ωt ix + cos ωt iy . (1.110) 

Hence, the coefficients of the vectors in the stationary frame are 

Q(t) = Q�(t) cos ωt + P �(t) sin ωt (1.111) 
P (t) = P �(t) cos ωt − Q�(t) sin ωt and (1.112) 

N �(t) = N(t) . (1.113) 

An instructive example to consider is for the state to be initially in the lower energy 
state, so that N(0) = −1, and Q(0) = P (0) = 0. Therefore, 

Q�(t) = 
ωo − ω 2V 

(cosΩt − 1) (1.114)
Ω h̄Ω 

and 
2V 

P �(t) = −
h̄Ω 

sin Ωt . (1.115) 

and � 
2V 

�2 

N �(t) = − (cos Ωt − 1) − 1 . (1.116)
h̄Ω 

and, consequently, 

Q(t) = 
ωo − ω 2V 

(cosΩt − 1) cos ωt − 
2V 

sinΩt sin ωt . (1.117)
Ω h̄Ω h̄Ω 

and 

P (t) = − 
ωo − ω 2V 

(cosΩt − 1) sin ωt − 
2V 

sinΩt cos ωt . (1.118)
Ω h̄Ω h̄Ω 

and 

N(t) = 2 
�

2V 
�2 

sin2 Ωt/2 − 1 (1.119)
h̄Ω 
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Figure 1.5: Time average of ρ22 vs. driving frequency ω. 

The probability of the system being in the excited state if initially in the ground state is 

ρ22 = 1 − ρ11 = 
� 

2V 
�2 

sin2 Ωt/2 (1.120)
h̄Ω 

=
1 (2V/h̄)2 �

1 − sin 
�

(ω − ωo)2 + (2V/h̄)2t 
� 

(1.121)
2 (ω − ωo)2 + (2V/h̄)2 

At resonance, when ω = ωo, the two states undergo a full Rabi oscillation with frequency 
2V/h̄. Note that in the driven case, the frequency of the oscillation on resonance is given 
by the strength of the potential and not the energy difference. Off resonance, the Rabi 
oscillation is no longer full. On average over time, 

1 (2V/h̄)2 

��ρ22(t)�� = 
2 (ω − ωo)2 + (2V/h̄)2 (1.122) 

which is plotted in Fig. 1.5 The line shape is Lorentzian with a full width at half maximum 
of 2V/h̄. 

1.5.3 On-resonance features 

Consider the on-resonance condition in the rotating frame. We have found in Eqn. 1.114— 
1.116 for a system that starts with N(0) = −1, that is, it starts fully in the lower state with 
P �(0) = Q�(0) = 0, 

N �(t) = − cos 2V t/h̄ and P �(t) = − sin 2V t/h̄ and Q�(t) = 0 . (1.123) 

This is exactly the same solution that was found for the time-independent solution in 
Eqn. 1.86. However, note that in this case that V is the amplitude of the driving sinusoidal 
potential; whereas, before, the solution was for a constant potential at the point where 
Δ = 0. A similar result would hold if the solution for any arbitrary initial condition. 

Figure is blank due to unavailable original.
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Hence, the unitary matrix in the rotating frame at resonance is, to within an overall phase 
factor, the same as in the static case at Δ = 0 and is given by Eqn. 1.49 (here V is positive) 

U �(t) = 
� 

cos V t/h̄ −i sin V t/h̄
� 

(1.124)−i sin V t/h̄ cos V t/h̄

Likewise, the wave functions on-resonance will also have the same form. This means, that if 
logical operations are consider in the rotating frame, a π-pulse can be performed by applying 
a frequency on resonance ω = ωo for a duration of 2V t/h̄ = π, so that 

� 
1 

� � 
0 

�
Uπ
� = −i (1.125)

0 1 

and NOT = iUπ. Here the notion of a “pulse” has a clearer meaning. Similarly, an equal 
superposition of states can be found by performing a π/2-pulse in which a frequency on 
resonance ω = ωo is applied for a duration of 2V t/h̄ = π/2 so that 

U � = √1
2 

� 

−
1 
i 
−
1 
i 
� 

. (1.126)π/2 

The resulting state is √1
2 

� 

−
1 
i 

�
. 

1.5.4 Time dependent wave functions and unitary evolution matrix 

The procedure for finding the wave function for the sinusoidal driving potential follows the 
same general insights of that used for the density matrix approach: The time-dependent 
potential problem is recast into a time-independent problem by going to the rotating frame 
of reference. However, we will not carry out the algebra for this problem but only state the 
results, and outline the approach is given in the problems. 

We denote the wave function as a linear combination of basis states 

ψ(t) = c1(t)φ1 + c2(t)φ2 (1.127) 

and the time dependence of the coefficients is given by Eqn. 1.88 

d 
� 

c1(t) 
� � ¯ V eiωt � � 

c1(t) 
� 

V ∗e−iωt ¯ih̄
dt c2(t)

= 
E − Δ 

E + Δ c2(t) 
(1.128) 

where V is a real constant. 
a aIf the initial wave function is ψ(0) = φ1, so that c1(0) = 1 and c2(0) = 0, then the state 

which we label a evolves such that 

a Et/h̄ i ω t 
� 

ωo − ω 
� 

c1(t) = e−i ¯ e 2 cos 
Ωt 

+ i sin 
Ωt 

(1.129)
2 Ω 2 

a Et/h̄e−i ω t 2V Ωt 
c (t) = −ie−i ¯

2 sin (1.130)2 ¯ 2hΩ 

where as above ωo = 2Δ/2 and Ω = 
�

(ωo − ω)2 + (2V /h̄)2. Likewise, if the initial wave 
function is ψ(0) = φ2, so that c2

b (0) = 1 and c1
b (0) = 0, then the state which we label b 



� 

� 

20 CHAPTER 1. TWO-STATE SYSTEM 

evolves such that 

e−i ¯ e−i ω Ωt Ωtb Et/h̄ t 
� 

ωo − ω 
� 

Ω 
2(t)
 sin
 (1.131)


2 
− i
=
 cos
c2 2


2V Ωt
Et/¯−ie−i ¯ i ω 
e 2

tb h(t)
 =
 sin
 .
 (1.132)
c
1 h̄Ω 2


For any arbitrary initial state give by ψ(0) = aφ1 + bφ2, then 

a aψ(t) = 
�
ac1(t) + bc1

b (t)
� 
φ1 + 

�
bc2

b (t) + ac2(t)
� 
φ2 . (1.133) 

Equivalently, the unitary evolution operator is given by 

i ω 
e 2

t 
�
cos Ω2 

t + iωo
Ω
−ω sin Ω2 

t 
�⎛ ⎞

ωiie− 2

Ωtt 
�
cos − iωo−ω sin Ωt 

2 Ω 2 

t 2V sin Ωt 
2Et/¯U(t) = e−i ¯ h̄Ωh (1.134)
⎝ ⎠ . 

−ie−i ω 
e−i ω 

2

At resonance, the unitary evolution matrix is given by 

2
t 2V sin Ωt 

2h̄Ω 

h 
� i ω 

e 2
t

2

2

−iei ω 

t e−i ω 
cos V t/h̄ 

cos V t/h̄
 t sin V t/h̄Et/¯(t) = e−i ¯ (1.135)
Uω=ω0 

2

ωi−ie 2− 

At time t = 0 the unitary evolution matrices and U �(t) (Eqn. 1.124) in the rotating frame 
and Uω=ω0 (t) in the laboratory frame are the same since the two coordinate systems coincide 

Et/h̄then. The overall phase factor of e−i ¯ does not change the physics of the states. But 
for other times, the additional phase factors of e±i ω 

t sin V t/h̄ 

t account for the difference between the 
two systems at resonance. 

1.6 The ideal two state system: Spin 1/2 particles 

Particles which have a magnetic moment µ have an energy in a magnetic field given by 

Hspin = −µ� B (1.136)· 

The magnetic moment is given by µ = geh̄/4m where m is the mass of the particle and g is 
known as the g=factor and g = 2 for the proton and neutron and g = −2 for the electron. 

Particles, such as electrons, protons, and neutrons, are fermions and are distinguished 
by having a two-state quantum mechanical label called spin. These two states can be 
represented by by the two-state systems that we have been studying, and will be denoted 
here by a column vector. Quantum mechanically it is observed that the vector magnetic 
moment operator of this two-state system is given by 

�
geh̄ 

[ˆ ix σy + ˆ iz (1.137)µ = σx + ˆ iy σz ]
4m 

where the σ’s are know as the Pauli matrices 
� 

0 1 
� � 

0 
� � 

1 0 
�

σ̂x = 
1 0 

σ̂y = 
i 

−
0 
i

σ̂z = 0 −1 
(1.138) 
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The Pauli matrices have the interesting properties that σ̂xσ̂y = iσ̂z and for all cyclical 
permutations. Also σ̂j 

2 = 1. And any two dimensional matrix can be represented by a 
linear combination of Pauli matrices and the identity matrix. 

Hamiltonian is then given by 

Hspin = −µ 
�� 

0 1 
� 

Bx + 
� 

0 −i 
� 

By + 
� 

1 
−
0
1 

� 

Bz 

� 

(1.139)
1 0 i 0 0 

For the rest of the discussion, we consider the proton where µ is positive. If B = Bziz 

and Bz is independent of time, then 

Hspin = µ 
� −1 0 

� 

Bz (1.140)
0 1 

and the eigen vectors are denoted are the two states denoted as spin up and spin down and 
given by � 

1 
� � 

0 
� 

|↑� = 
0 

and |↓� = 
1 

(1.141) 

with energies −µBx and +µBx respectively. If an additional time-dependent field in the 
xy-plane is applied such that 

B(t) = −b (cos ωtix − sin ωtiy) + Bziz . (1.142) 

Therefore, the Hamiltonian is 

= 
� −µBz µbeiωt � 

(1.143)Hspin µbe−iωt µBz 

This Hamiltonian is of the same form that was discussed for a sinusoidal potential drive, 
Here V = µb and h̄ωo = 2Δ = 2µBz. 

In the general state, 
��µ� = tr (ρ̂�µ) (1.144) 

and we find that 

��µx� = µQ(t) �µ�y� = µP (t) and ��µz� = −µN(t) . (1.145) 

Therefore, the dynamics of the spin system is the same as that of the two level system. 
Here the strength of the parameters are controlled by the magnetic field. For example, the 
z-component of the magnetic field determines the energy difference Δ = 2µBz. Transitions 
from one state to the other can then be done by driving the system on resonance, that is, by 
putting an oscillating magnetic field in the xy-plane with a frequency equal to the energy 
difference. This is the principle of Nuclear Magnetic Resonance, where the field is of the 
order of a few tesla and the characteristic frequency is in the radio frequency regime. Hence, 
by putting a human subject in the core of a large magnet and then applying a magnetic 
field tuned to the energy difference of hydrogen nuclei (protons) in water molecules, one 
can absorb more energy the greater the concentration of water. Since different tissues have 
different concentrations, the tissues can be imaged. In organic molecules, the frequency 
of the energy difference is changed by the proximity of other atomics in the vicinity of 
the hydrogen nuclei. In this way, different neighbors can be determined. Furthermore, by 
adjusting the time of application of this oscillating magnetic field, one can cause the system 
to go from one state to the other, and hence do a π-pulse for quantum logic operations. 
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Chapter 2 

3D Rotation Matrices for the 
Two-State System 

2.1 σz Drive: Density Matrix Approach 

2.1.1 General formulation 

The general two-state Hamiltonian is written as 

Ĥ = 
� 

E ¯ − Δ
¯ 

V 
� 

(2.1)
V ∗ E + Δ 

The density matrix can be written in terms of three quantities 

N(t) = ρ22 − ρ11 (2.2) 

and 
Q(t) = ρ21 + ρ12 (2.3) 

and 
1 

P (t) = (ρ21 − ρ12) . (2.4)
i 

So that the time evolution is given by the Bloch equations, 

dt

d 
ρ̂ = −

i

1
h̄ 

�
ρ,̂ Ĥ

� 
. (2.5) 

which results in 
d 1 

N(t) = − 
h 
{Q(t)(V − V ∗) + iP (t)(V + V ∗)} (2.6)

dt i¯
and 

d 2Δ 1 
Q(t) = P (t) + N(t)(V − V ∗) (2.7)

dt h̄ ih̄

and 
d 2Δ 1 

P (t) = − Q(t) + N(t)(V + V ∗) (2.8)
dt h̄ h̄

23 
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2.1.2 Method of Solution: Effective Fields in Lab frame 

The above equations can be recast into an equivalent algebraic problem of a magnetic 
moment of magnetization M in a magnetic field B. 

The density matrix can be written as 
� 

1+Mz Mx−iMy 
� 

ρ = Mx+
2 
iMy 1−

2 
Mz 

(2.9) 
2 2 

and the Hamiltonian as 
Hz Hx−iHy

ˆ ¯ 2 2H = EI + Hx+iHy −Hz	
(2.10) 

2 2 

This allows the identification 

Mx = Q(t) =	 ρ21 + ρ12 (2.11) 
1 

My = P (t) = (ρ21 − ρ12)
i 

Mz = −N(t) = ρ11 − ρ22 

and 

Hx = V + V ∗	 (2.12) 
Hy = V − V ∗ 

Hz = −2Δ 

The time dependence of the density matrix is 

d 1 
ρ̂ = − 

�
ρ,̂ Ĥ

� 
.	 (2.13)

dt ih̄ 

then becomes 
d d

� 
dt Mz dt (Mx − iMy) 

� 

d (Mx + iMy) d Mzdt	 dt 

= 
−1 

� 
i(MxHy − MyHx) i(My Hz − Mz Hy) + (Mz Hx − MxHz ) 

� 

(2.14)
h̄ i(My Hz − MzHy) − (Mz Hx − MxHz ) −i(MxHy − MyHx) 

This is equivalent to 
d 

M(t) = M(t) × γB(t) ,	 (2.15)
dt 

where γ = 1/h̄ and 
B = −H (2.16) 

and 
M(t) = Mxix + Myiy + Mziz (2.17) 

and 
H(t) = Hxix + Hyiy + Hziz . (2.18) 

The problem then maps on to a Magnetization in a magnetic field such that the Hamil
tonian is (with E ¯ = 0), 

Ĥ = −γÎ B (2.19)· 
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where I = Ixix + Iyiy + Iziz . is the spin vector with Ii = σi/2. 
To understand the dynamics of the system, we solve the equivalent Bloch Equations 

of Eqn. 2.15 in the simple case of a constant field along the z direction; B = Bziz. From 
Eqn. 2.15 

d 
Mx = γMyBz (2.20)

dt 
d 

My = −γMxBz
dt 

which leads to the solutions with initial values 

Mx(t) = Mx(0) cos γBzt + My(0) sin γBzt (2.21) 
My(t) = My(0) cos γBzt − Mx(0) sin γBzt . 

We will also adopt the sign convention that ωo = −γBz so that with γ = 1/h̄, a 
magnetization vector in a z-directed field rotates in the counter-clockwise direction (right
hand rule) with frequency ωo. Note that is means that it rotates in the clock-wise direction 
with frequency γBz. Hence, 

Mx(t) = Mx(0) cos ωot − My(0) sin ωot (2.22) 
My(t) = My(0) cos ωot + Mx(0) sin ωot . 

We can write this as 
⎛
⎝ 

⎞
⎠ =


⎛
⎝ 

⎛
⎝ 

⎞
⎠ 

⎞
⎠ (2.23)


(t)
 − sin ωot 0 
cos ωot 

(0)
Mx cos ωot 
sin ωot 

Mx

(t)
 0
 (0)
My My

(t)
 0 0 1
 (0)
Mz Mz

The rotation of a vector about the z-axis by an angle φ is given by the rotation matrix


Rz(φ) =


⎛
⎝ 

⎞
⎠ (2.24)


cos φ − sin φ 0 
cos φsin φ
 0


0 0 1


Therefore, for a constant field along the z-axis, the magnetization precesses (rotates) 
about the z-axis with angle ωot where ωo = −γBz, 

M(t) = Rz(ωot)M(0) (2.25) 

The adoption of the minus sign in ω is useful since it makes a positive field along z cause a 
positive rotation about z in mathematical terms, but remember that rotation angle happens 
to be negative. There are many conventions on how to handle this minus sign, and this is 
the one we will use in this class (see Spin Dynamics, by M. H. Levitt). 

Often one want to know how the magnetization at time t1 evolves up to time t2 during 
the interval τ = t2 − t1. From a shift in the time axis, one finds 

M(t2) = Rz(ωoτ)M(t1) (2.26) 
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1√

Figure 2.1: A rotating reference frame, which is taken to be along the z-axis here. The 
rotation frequency it ωref and the initial offset angle is φref . The full angle of rotation is 
Φ(t) = ωref t + φref . 

Let’s consider some initial conditions which are valuable in quantum computing. First 
consider the case where the initial condition is M(0) = Mz(0)iz. This implies that initial � 

1 
�

quantum state is (to within an irrelevant phase factor), ψ(0) = . This state evolves 
0 

as M(t) = Rz(ωot)M(0) = Mziz. Hence, the state remain the same (to within a phase 
factor). The projection of M(t) along the z-axis, which is the axis of quantization, remains 
the same and is equal to one. 

Secondly, consider the initial condition of M(0) = ix so that the initial magnetization 

is along the x-axis. This corresponds to the initial quantum state ψ(0) = 
� 

1 
� 

which 
12 

√

is an eigen state of the σx operator. The projection of this state along the z-axis is zero, 
meaning that it is as equally likely for this state to be in the spin-up state as the spin-down 
state. The field in the z direction causes the magnetization to rotate with about the z-axis, 
in the xy-plane with a constant frequency ωo. We take Bz ≥ 0, so that ωo ≤ 0. So after a 
time τπ/2 = π/(−2ωo), the magnetization vector is along the −y-axis and the state is then 
an eigen state of the σy operator. The state after this −π/2-rotation is, to within a phase 

1

� 
1 

�
factor, ψ(tπ/2) =
 . 

2 −i 
Likewise, after a time, τπ = π/(−ωo), the magnetization is 

√
along the −x-axis, so that the state has been transformed to the spin-down state along the 

1

� 
1 

� 

x-axis. This corresponds to the state, ψ(0) =
 −1
. 

2 

2.1.3 Effective Fields in a Rotating Frame 

In finding the effects of an ac driving field on the qubit, it will be convenient to study the 
dynamics in a rotating frame. Consider the rotating frame which rotates with a constant 
angular velocity ωref about a given given axis denoted by the vector ω� ref as shown in 
Figure 2.1. The initial offset angle is φref . The full angle of rotation is Φ(t) = ωref t + φref . 

Figure is blank due to unavailable original.
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The same physical vector is denoted by A(t) in the stationary frame and by Ã(t) in the 
rotating frame. We write the same physical vector in each of the two reference frames as 

A(t) = Axix + Ayiy + Aziz (2.27) 

and 
Ã(t) = Ãx ̃ix + Ãy ̃iy + Ãz ̃iz (2.28) 

We can related the coefficients in each frame by Ã(t) = Rref (−Φ(t))A(t), where the sub
script on the rotation matrix denotes the direction of the rotation axis. 

The unit vectors in the rotating frame change with time by 

d ̃
ix = ω� ref × ix and 

d ̃
iy = ω� ref × iy and 

d ̃
iz = ω� ref × iz . (2.29)

dt dt dt 

The time rate of change of the physical vector is then given by 

d dAx dAy dAzA(t) = ix + iy + iz (2.30)
dt dt dt dt 

= 
∂Ãx ĩx + 

∂Ãy ̃iy + 
∂Ãz ̃iz + Ãx 

d̃ix + Ãy 
d̃iy 

Ãz 
d̃iz 

∂t ∂t ∂t dt dt dt 

= 
d 

Ã(t)
dt 

where ∂Ax denotes the partial time derivative. The above equation can be written compactly ∂t 
as 

d ∂
A(t) = Ã + �ωref × Ã (2.31)

dt ∂t 

Here ∂Ã(t)/∂t is the time rate of change of the vector as seen by an observer in the rotating 
reference frame. 

The Bloch equations of motion can now be expressed in the rotating frame. In the 
stationary frame 

d 
M(t) = M(t) × γB(t) (2.32)

dt 
or equivalently expressed with the vectors in the rotating frame 

d ˜ M(t) × γ ˜ (2.33)M(t) = ˜ B(t) . 
dt 

Using the above we can write the Bloch equations as 

∂ 
M̃ + �ωref × ˜ ˜ × γB̃(t) . (2.34)M = M(t)

∂t 

Equivalently, 
∂ 

M(t) = ˜ (2.35)˜ M(t) × γB̃eff (t)
∂t 

where 

B̃eff (t) = B(t) + 
�ω 

. (2.36)
γ 
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Hence, in terms of the time derivative of the magnetization vector in the rotating frame, 
the Bloch equations are of the same form as in the stationary frame, but with an additional 
magnetic field along the direction of rotation. 

The initial reference angle φref does not enter into the equations of motion directly, but 
only through the initial conditions. By convention, 

φref = π if γ > 0 (2.37) 
φref = 0 if γ < 0 

Since γ = 1/h̄ we will take φref = π 

2.2 Problems 

Problem 1Wave functions the sinusoidal drive. 
Denote the wave function as a linear combination of basis states 

ψ(t) = c1(t)φ1 + c2(t)φ2 (2.38) 

and the time dependence of the coefficients is given by Eqn. 1.128 for a sinusoidal driving 
potential of V (t) = V eiωt is 

ih̄
d 

� 
c1(t) 

� 

= 
� 

E ¯ − Δ V eiωt � � 
c1(t) 

� 

(2.39)
dt c2(t) V ∗e−iωt E ¯ + Δ c2(t) 

where V is a real constant. 

(a) Let ci(t) = bi(t)e−i Ēt/hbar and show that 

ih̄
d 

� 
b1(t) 

� 

= 
� −Δ V eiωt � � 

b1(t) 
� 

(2.40)
dt b2(t) V ∗e−iωt Δ b2(t) 

(b) Now let b1(t) = b1e
iλ1t/hbar and b2(t) = b2e

iλ2t/hbar where b1 and b2 are independent of 
time. Show that if λ1 = λ2 ± hω¯ , then the resulting equations are and eigen value problem 
which independent of time. 

(c) Find the resulting eigen values, and show that there are two values each λi which can be 
written as λ1,± = h̄(ω ± Ω)/2 and λ2,± = h̄(−ω ± Ω)/2 where Ω = 

�
(ωo − ω)2 + (2V/h̄)2. 

(d) Write the form of the general solution for in terms of these four eigen values. Use this 
and match initial conditions to find c1

a(t), c2
a(t), c1

b (t), and c2
b (t) as in Eqns. 1.132 and ??. 

(e) Show that the Unitary evolution matrix of Eqn. 1.135 is given by 

a a� 
c1(t) c2(t) 

� 

c2
a(t) c2

b (t) 
(2.41) 




