6.730 Physics for Solid State Applications

Lecture 12: Electrons in a Periodic Solid

Outline

- Review Lattice Waves
- Brillouin-Zone and Dispersion Relations
- Introduce Electronic Bandstructure Calculations
- Example: Tight-Binding Method for 1-D Crystals

Solutions of Lattice Equations of Motion Convert to Difference Equation

$$
M \frac{d^{2}}{d t^{2}} u[n, t]=-\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) u[m, t]
$$

Time harmonic solutions...

$$
\tilde{u}[n, t]=\tilde{U}[n, \omega] e^{-i \omega t}
$$

Plugging in, converts equation of motion into coupled difference equations:

$$
M \omega^{2} \widetilde{U}[n]=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) \widetilde{U}[m]
$$

Solutions of Lattice Equations of Motion

$$
M \omega^{2} \widetilde{U}[n]=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) \widetilde{U}[m]
$$

We can guess solution of the form:

$$
\tilde{U}[p+1]=\tilde{U}[p] z^{-1} \quad \text { and } \quad \tilde{U}[p]=\tilde{U}[0] z^{-p}
$$

This is equivalent to taking the z-transform...

$$
\left\{\begin{array}{l}
M \omega^{2} \tilde{U}[0]=\left(\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) z^{n-m}\right) \tilde{U}[0] \\
M \omega^{2}=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) z^{n-m}
\end{array}\right.
$$

Solutions of Lattice Equations of Motion Consider Undamped Lattice Vibrations

$$
M \omega^{2}=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) z^{n-m} \quad \tilde{U}[p]=\tilde{U}[0] z^{-p}
$$

We are going to consider the undamped vibrations of the lattice:

$$
\begin{aligned}
|U[m]| & =|U[n]| \\
|z| & =1 \\
z & =e^{-i k a}
\end{aligned}
$$

$$
\widetilde{u}[n, t]=\tilde{U}[0] e^{i(k n a-\omega t)}
$$

Solutions of Lattice Equations of Motion Dynamical Matrix

$$
\left.\begin{array}{rl}
M \omega^{2}= & \sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) z^{n-m} \tilde{u}[n, t]=\widetilde{U}[0] e^{i(k n a-\omega t)} \\
z=e^{-i k a}
\end{array}\right] \begin{aligned}
& M \omega^{2}=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) e^{i k a(m-n)} v \\
& \\
& =\sum_{m=-\infty}^{\infty} \widetilde{D}(n-m) e^{i k a(m-n)} \\
& \\
& = \\
&
\end{aligned}
$$

Solution of 1-D Lattice Equation of Motion Example of Nearest Neighbor Interactions

$$
\omega=2 \sqrt{\frac{\alpha}{M}}\left|\sin \left(\frac{k a}{2}\right)\right|
$$

From what we know about Brillouin zones the points A and B (related by a reciprocal lattice vector) must be identical

$$
\omega(k)=\omega(k+n 2 \pi / a)
$$

This implies that the wave form of the vibrating atoms must also be identical.

Solution of 3-D Lattice Equation of Motion

$$
\begin{gathered}
U[n+1]=e^{i k a} U[n] \\
U[n]=e^{i k n a} U[0]=e^{i k n a} \tilde{\epsilon} \\
\omega^{2} M \tilde{\epsilon}=D(k) \tilde{\epsilon} \\
D(k)=\sum_{m=-\infty}^{\infty} \widetilde{\mathbf{D}}(\mathrm{n}-\mathrm{m}) \mathrm{e}^{\mathrm{ika}(\mathrm{~m}-\mathrm{n})}=\sum_{\mathrm{p}=-\infty}^{\infty} \widetilde{\mathrm{D}}(\mathrm{p}) \mathrm{e}^{-\mathrm{ikpa}} \\
\left(\mathrm{M}^{-1} \mathrm{D}(\mathrm{k})\right) \vec{\epsilon}=\omega^{2} \vec{\epsilon}
\end{gathered}
$$

Phonon Dispersion in FCC with 2 Atom Basis

http://debian.mps.krakow.pl/phonon/Public/phrefer.html

Approaches to Calculating Electronic Bandstructure

Nearly Free Electron Approximation:

- Superposition of a few plane waves

$$
\psi(r)=\sum_{\mathbf{R}} c_{\mathbf{k}} e^{i \mathbf{k r}}
$$

Cellular Methods (Augmented Plane Wave):

- Plane wave between outside r_{s}
- Atomic orbital inside r_{s} (core)

Pseudopotential Approximation:

- Superposition of plane waves coupled by pseudopotential

- Superposition of bandedge ($\mathrm{k}=0$) wavefunctions

Tight-binding Approximation (LCAO):

$$
\psi_{i}(r)=\sum_{\alpha} \sum_{\mathbf{R}_{n}} c_{i, \alpha\left[\mathbf{R}_{n}\right]} \phi_{\alpha}\left(r-\mathbf{R}_{n}\right)
$$

- Superposition of atomic orbitals

Band Formation in 1-D Solid

- Simple model for a solid: the one-dimensional solid, which consists of a single, infinitely long line of atoms, each one having one s orbital available for forming molecular orbitals (MOs).

When the chain is extended:

\rightarrow The range of energies covered by the MOs is spread

\rightarrow This range of energies is filled in with more and more orbitals
\rightarrow The width of the range of energies of the 4 MOs is finite, while the number of molecular orbitals is infinite: This is called a band .

Tight-binding (LCAO) Band Theory

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(r)\right] \psi_{l}(r)=E_{l} \psi_{l}(r)
$$

$$
V(r)=V_{o}(r)+\Delta V(r)
$$

$$
[\underbrace{-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{o}(r)}_{\text {atomic }}+\Delta V(r)] \psi_{l}(r)=E_{l} \psi_{l}(r)
$$

$$
\Delta V(r)=\sum_{R \neq 0} V_{0}(r+R) \quad V(r)=\sum_{R} V_{0}(r+R)
$$

LCAO Wavefunction

$$
\begin{array}{r}
\hat{\mathcal{H}}=\frac{\hat{\mathbf{p}}^{2}}{2 m}+V_{0}(r)+\Delta V(r) \\
\frac{\hat{\mathbf{p}}^{2}}{2 m} \phi_{i}(r)+V_{0}(r) \phi_{i}(r)=E_{i} \phi_{i}(r) \\
\psi_{i}(r)=\sum_{\alpha} \sum_{\mathbf{R}_{n}} c_{i, \alpha}\left[\mathbf{R}_{n}\right] \phi_{\alpha}\left(r-\mathbf{R}_{n}\right) \\
\psi(\mathbf{r})=\sum_{\mathbf{n}=-\infty}^{\infty} \mathrm{c}[\mathbf{n}] \phi\left(\mathbf{r}-\mathbf{n a i} \mathbf{i}_{\mathbf{x}}\right)
\end{array}
$$

$$
V_{o}(r)
$$

$$
0
$$

Energy for LCAO Bands

$$
\begin{gathered}
\sum_{m=-\infty}^{\infty} \widetilde{H}(n, m) c[m]=E \sum_{p=-\infty}^{\infty} \widetilde{S}(n, p) c[p] \\
\widetilde{H}(n, m)=\langle\phi(\mathbf{r}-\mathbf{n a i} \mathbf{x})| \hat{\mathcal{H}}\left|\phi\left(\mathbf{r}-\mathbf{m a i}_{\mathbf{x}}\right)\right\rangle \\
\widetilde{S}(n, p)=\langle\phi(\mathbf{r}-\mathbf{n a i} \mathbf{x}) \mid \phi(\mathbf{r}-\mathbf{p a i} \mathbf{x})\rangle \\
c[p+1]=c[p] z^{-1} \quad \text { and } \quad c[p]=c[0] z^{-p} \\
\left(\sum_{m=-\infty}^{\infty} \widetilde{H}(n, m) e^{-i k(n-m) a}\right) \epsilon=E\left(\sum_{p=-\infty}^{\infty} \widetilde{S}(n, p) e^{-i k(n-p) a}\right) \epsilon
\end{gathered}
$$

Energy for LCAO Bands

$$
\begin{aligned}
&\left(\sum_{m=-\infty}^{\infty} \widetilde{H}(n, m) e^{-i k(n-m) a}\right) \epsilon=E\left(\sum_{p=-\infty}^{\infty} \widetilde{S}(n, p) e^{-i k(n-p) a}\right) \epsilon \\
& \widetilde{H}(n, m)=\widetilde{H}^{*}(m, n)=\widetilde{H}(n-m) \quad \text { and } \\
& \widetilde{S}(n, m)=\widetilde{S}^{*}(m, n)=\widetilde{S}(n-m)
\end{aligned}
$$

Reduced Hamiltonian Matrix:
Reduced Overlap Matrix:

$$
H(k)=\sum_{p=-\infty}^{\infty} \widetilde{H}(p) e^{-i k p a} \quad S(k)=\sum_{p=-\infty}^{\infty} \widetilde{S}(p) e^{-i k p a}
$$

$$
\begin{gathered}
H(k) \epsilon=E S(k) \epsilon \\
E(k)=\frac{H(k)}{S(k)}
\end{gathered}
$$

Reduced Overlap Matrix for 1-D Lattice

Single orbital, single atom basis

$$
S(k)=\sum_{p=-\infty}^{\infty} \widetilde{S}(p) e^{-i k p a}
$$

$$
\begin{aligned}
\widetilde{S}(0)=\langle\phi(r) \mid \phi(r)\rangle & =1 \\
\widetilde{S}(1) & =\left\langle\phi\left(\mathbf{r}-\mathbf{a} \mathbf{i}_{\mathrm{x}}\right) \mid \phi(\mathbf{r})\right\rangle \\
\widetilde{S}(1) & =\widetilde{S}(-1) \\
S(k)=1+\widetilde{S}(1)\left(e^{i k a}+e^{-i k a}\right) &
\end{aligned}
$$

Reduced Hamiltonian Matrix for 1-D Lattice

Single orbital, single atom basis

$$
\begin{aligned}
& H(k)=\sum_{p=-\infty}^{\infty} \widetilde{H}(p) e^{-i k p a} \\
& \widetilde{H}(0)=\langle\phi(r)| \frac{\hat{p}^{2}}{2 m}+V_{0}+\Delta V(r)|\phi(r)\rangle \\
& =E_{s}^{0}+\langle\phi(r)| \Delta V(r)|\phi(r)\rangle \\
& \equiv E_{s} \\
& \widetilde{H}(1)=\left\langle\phi\left(\mathbf{r}-\mathbf{a i} \mathbf{i}_{\mathbf{x}}\right)\right| \frac{\hat{\mathbf{p}}^{2}}{2 \mathbf{m}}+\mathbf{V}_{\mathbf{0}}+\Delta \mathbf{V}(\mathbf{r})|\phi(\mathbf{r})\rangle \\
& \equiv V_{s s \sigma} \\
& =\widetilde{H}(-1) \\
& \quad H(k)=E_{s}+V_{s s \sigma}\left(e^{i k a}+e^{-i k a}\right)
\end{aligned}
$$

Energy Band for 1-D Lattice

Single orbital, single atom basis

$$
\begin{gathered}
E(k)=\frac{H(k)}{S(k)}=\frac{E_{s}+V_{s s \sigma}\left(e^{i k a}+e^{-i k a}\right)}{1+\widetilde{S}(1)\left(e^{i k a}+e^{-i k a}\right)} \\
E(k)=E(k+n 2 \pi / a)
\end{gathered}
$$

$|\widetilde{S}(1)| \ll 1$

$$
E(k) \approx E_{s}+2 V_{s s \sigma} \cos k a
$$

LCAO Wavefunction for 1-D Lattice

Single orbital, single atom basis

$$
\begin{gathered}
\psi(\mathrm{r})=\sum_{\mathbf{n}=-\infty}^{\infty} \mathbf{c}[\mathbf{n}] \phi\left(\mathbf{r}-\mathbf{n a i}_{\mathbf{x}}\right) \\
c[n]=\epsilon e^{-i k n a} \\
\psi_{k}(\mathrm{r})=\epsilon \sum_{\mathbf{n}=-\infty}^{\infty} \mathrm{e}^{-\mathrm{ikna}} \phi\left(\mathbf{r}-\mathbf{n a i _ { \mathbf { x } }}\right) \\
\psi_{k}(\mathrm{r})=\psi_{\mathbf{k}+\mathbf{K}_{\ell}}(\mathbf{r})
\end{gathered}
$$

LCAO Wavefunction for 1-D Lattice

Single orbital, single atom basis

$$
\begin{aligned}
& \psi_{k}(\mathrm{r})=\epsilon \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{e}^{-\mathrm{ikna}} \phi\left(\mathrm{r}-\mathrm{nai}_{\mathrm{x}}\right) \\
& k=0 \\
& k \neq 0 \\
& k=\pi / a \text { a } 4 \\
& k=2 \pi p /(N a)
\end{aligned}
$$

LCAO Wavefunction for 1-D Lattice

Single orbital, single atom basis

$$
\psi_{k}(\mathrm{r})=\epsilon \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{e}^{-\mathrm{ikna}} \phi\left(\mathrm{r}-\mathrm{nai}_{\mathbf{x}}\right)
$$

$k=0$

$$
\psi_{k=0}(\mathbf{r})=\epsilon\left[\cdots+\phi\left(\mathbf{r}+\mathbf{a i}_{\mathrm{x}}\right)+\phi(\mathrm{r})+\phi\left(\mathrm{r}-\mathrm{ai}_{\mathrm{x}}\right)+\phi\left(\mathbf{r}-\mathbf{2} \mathrm{ai}_{\mathrm{x}}\right)+\phi\left(\mathrm{r}-3 \mathrm{ai}_{\mathrm{x}}\right)+\ldots\right]
$$

lowest energy (fewest nodes)

$k=\pi / a$
$\psi_{k=\pi / a}(\mathbf{r})=\epsilon\left[\cdots-\phi\left(\mathbf{r}+\mathbf{a} \mathbf{i}_{\mathbf{x}}\right)+\phi(\mathbf{r})-\phi\left(\mathbf{r}-\mathbf{a} \mathbf{i}_{\mathbf{x}}\right)+\phi\left(\mathbf{r}-\mathbf{2} \mathbf{a i}_{\mathbf{x}}\right)-\phi\left(\mathbf{r}-\mathbf{3} \mathbf{a}_{\mathbf{x}}\right)+\ldots\right]$

highest energy (most nodes)

Bloch's Theorem

$$
\psi_{k}(\mathrm{r})=\epsilon \sum_{\mathbf{n}=-\infty}^{\infty} \mathrm{e}^{-\mathrm{ikna}} \phi\left(\mathrm{r}-\mathrm{nai}_{\mathrm{x}}\right)
$$

Translation of wavefunction by a lattice constant...

$$
\begin{aligned}
\psi_{k}\left(\mathbf{r}+\mathbf{a} \mathbf{i}_{\mathbf{x}}\right) & =\epsilon \sum_{\mathbf{n}=-\infty}^{\infty} \mathbf{e}^{\mathbf{i k n a}} \phi\left(\mathbf{r}+\mathbf{a i}_{\mathbf{x}}-\mathbf{n a i _ { \mathbf { X } }}\right) \\
& =e^{i \mathbf{k a} \epsilon} \sum_{n=-\infty}^{\infty} e^{i \mathbf{k}(\mathbf{n}-1) \mathbf{a}} \phi\left(\mathbf{r}-(\mathbf{n}-\mathbf{1}) \mathbf{a i}_{\mathbf{x}}\right)
\end{aligned}
$$

...yields the original wavefunction multiplied by a phase factor

$$
\psi_{k}\left(\mathbf{r}+\mathrm{ai}_{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{i} \mathrm{ka}} \psi_{\mathbf{k}}(\mathrm{r})
$$

Consistent that the probability density is equal at each lattice site

Wavefunction Normalization

Using periodic boundary conditione for a crystal with N lattice sites between boundaries...

$$
\psi_{k}(\mathrm{r})=\frac{1}{\sqrt{N a}} \mathrm{e}^{\mathrm{ikx}} \mathbf{u}_{\mathbf{k}}(\mathrm{r})
$$

$$
1=\int_{V_{\text {box }}} \psi_{k}^{*}(\mathbf{r}) \psi_{\mathbf{k}}(\mathbf{r}) \mathrm{d}^{3} \mathbf{r}
$$

$$
=\frac{1}{N a} \int_{V_{\text {box }}} u_{k}^{*}(\mathbf{r}) \mathbf{u}_{\mathbf{k}}(\mathbf{r}) \mathrm{d}^{3} \mathbf{r}=\frac{\mathbf{1}}{\mathbf{a}} \int_{\text {unit cell }} \mathbf{u}_{\mathbf{k}}^{*}(\mathbf{r}) \mathbf{u}_{\mathbf{k}}(\mathbf{r}) \mathrm{d}^{3} \mathbf{r}
$$

Counting Number of States in a Band

Combining periodic boundary condition...

$$
\psi_{k}\left(\mathrm{r}+\mathrm{Nai}_{\mathrm{x}}\right)=\psi_{\mathbf{k}}(\mathrm{r})
$$

...with Bloch's theorem...

$$
\psi_{k}\left(\mathrm{r}+\mathrm{Nai}_{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{ikNa}} \psi_{\mathbf{k}}(\mathrm{r})
$$

...yields a discrete set of k-vectors

$$
k=m \frac{2 \pi}{N a} \quad \text { where } \quad m=0, \pm 1, \pm 2, \cdots
$$

Within the $1^{\text {st }}$ Brillouin Zone there are N states or 2 N electrons

Tight-binding and Lattice Wave Formalism

Electrons (LCAO)

$$
\left(\tilde{\mathbf{S}}^{-1}(\mathbf{k}) \mathbf{H}(\mathbf{k})\right) \tilde{\epsilon}=\mathbf{E} \tilde{\epsilon}
$$

$$
\mathbf{H}_{\beta, \alpha}(\mathbf{k})=
$$

$$
\sum_{\mathbf{R}_{\mathbf{p}}}\left\langle\phi_{\beta \mathbf{r}-\mathbf{R}_{\mathbf{s}}-\mathbf{R}_{\mathbf{p}}}\right| \widehat{\mathcal{H}}\left|\phi_{\alpha \mathbf{r}-\mathbf{R}_{\mathbf{s}}}\right\rangle e^{-i \mathbf{k} \cdot \mathbf{R}_{\mathbf{p}}}
$$

$$
S_{\beta, \alpha}(\mathbf{k})=
$$

$$
E(k)=E(k+n 2 \pi / a)
$$

Lattice Waves

$$
\left(\mathbf{M}^{-1} \mathbf{D}(\mathbf{k})\right) \vec{\epsilon}=\omega^{2} \vec{\epsilon}
$$

$\widetilde{\mathbf{D}}_{i, j}(p, m)=\left(\frac{\partial^{2} V}{\partial u_{i}[p, t] \partial u_{j}[m, t]}\right)_{\mathrm{eq}}$
$\omega(k)=\omega(k+n 2 \pi / a)$

