6.730 Physics for Solid State Applications

Lecture 16: Nearly Free Electron Bands

<u>Outline</u>

- Fun: Application of 1-D Tight Binding
- Free Electron in Reduced Zone Representation
- Nearly Free Electron Bands
- Labeling Eigenvectors

B. Ethene and frontier orbitals

Ethene: CH₂=CH₂

Within the Hückel approximation, the secular determinant becomes:

→ HOMO and LUMO are the *frontier orbitals* of a molecule.

→ those are important orbitals because they are largely responsible for many *chemical* and *optical properties* of the molecule.

Courtesy of Crispin Xavier Dept. of Physics, Linköping University

Note: The π orbitals together give rise to an cylindrical distribution of charge. Electrons can circulate around this torus can create magnetic effect detected in NMR

For intrinsically pure CP films, the band-gap between the π and π* bands is expected to be essentially free of defect and dangling-bond states. Surface state densities should also be minimal since chemical bonds at the surface of an organic semiconductor are identical to those in the bulk

band gap (eV)

LCAO and Nearly Free Electron Bandstructure

$$\psi_i(r) = \sum_{\alpha} \sum_{\mathbf{R}_n} c_{i,\alpha[\mathbf{R}_n]} \phi_{\alpha}(r - \mathbf{R}_n) \qquad \psi(r) = \sum_{\mathbf{R}} c_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}}$$

k

For weak lattice potentials, E vs k is still approximately correct... $E = \frac{\hbar^2 k^2}{2m}$ Dispersion relation must be periodic.... $E(k) = E(k + K_i)$

k

Dispersion relation must be periodic.... $E(k) = E(k + K_i)$

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

k

Dispersion relation must be periodic.... $E(k) = E(k + K_i)$

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

Dispersion relation must be periodic.... $E(k) = E(k + K_i)$

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

Extension to 3-D requires, translation by reciprocal lattice vectors in all directions... $E(\mathbf{k}) = E(\mathbf{k} + \mathbf{K_i})$

Extension to 3-D requires, translation by reciprocal lattice vectors in all directions... $E(\mathbf{k}) = E(\mathbf{k} + \mathbf{K_i})$

Ge

LCAO and Nearly Free Electron Bandstructure

$$\psi_i(r) = \sum_{\alpha} \sum_{\mathbf{R}_n} c_{i,\alpha[\mathbf{R}_n]} \phi_{\alpha}(r - \mathbf{R}_n) \qquad \psi(r) = \sum_{\mathbf{R}} c_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}}$$

Finite Basis Set Expansion with Plane Waves

$$\begin{split} \psi_{k}(\mathbf{r}) &= \frac{1}{\sqrt{V_{\text{box}}}} e^{i\mathbf{k}\cdot\mathbf{r}} u_{k}(\mathbf{r}) \\ \text{Fourier series expansion of Bloch function} \\ \psi_{k}(\mathbf{r}) &= \frac{1}{\sqrt{V_{\text{box}}}} e^{i\mathbf{k}\cdot\mathbf{r}} \sum_{\{K_{i}\}} u_{k}[K_{i}] e^{iK_{i}\cdot\mathbf{r}} \\ \psi_{k}(\mathbf{r}) &= \sum_{\{K_{i}\}} u_{k}[K_{i}] \left(\frac{1}{\sqrt{V_{\text{box}}}} e^{i(\mathbf{k}+K_{i})\cdot\mathbf{r}}\right) \end{split}$$

Basis functions in expansion are...

$$\phi_{\ell}(\mathbf{r}) = \frac{1}{\sqrt{V_{\text{box}}}} \mathbf{e}^{\mathbf{i}(\mathbf{k} + \mathbf{K}_{\mathbf{i}}) \cdot \mathbf{r}}$$

Finite Basis Set Expansion with Plane Waves Hamiltonian Matrix

$$\phi_{\ell}(\mathbf{r}) = \frac{1}{\sqrt{V_{\text{box}}}} \mathbf{e}^{\mathbf{i}(\mathbf{k} + \mathbf{K}_{\mathbf{i}}) \cdot \mathbf{r}}$$

$$E\begin{pmatrix} u_{\mathbf{k}}[\mathbf{K}_{0}]\\ u_{\mathbf{k}}[\mathbf{K}_{1}]\\ u_{\mathbf{k}}[\mathbf{K}_{2}]\\ u_{\mathbf{k}}[\mathbf{K}_{3}] \end{pmatrix} = \begin{pmatrix} H_{00} & H_{01} & H_{02} & H_{03}\\ H_{10} & H_{11} & H_{12} & H_{13}\\ H_{20} & H_{21} & H_{22} & H_{23}\\ H_{30} & H_{31} & H_{32} & H_{33} \end{pmatrix} \begin{pmatrix} u_{\mathbf{k}}[\mathbf{K}_{0}]\\ u_{\mathbf{k}}[\mathbf{K}_{1}]\\ u_{\mathbf{k}}[\mathbf{K}_{2}]\\ u_{\mathbf{k}}[\mathbf{K}_{3}] \end{pmatrix}$$

Basis functions are exactly orthogonal...overlaps are all zero.

$$\frac{1}{V_{\text{box}}} \int_{V_{\text{box}}} e^{-i(\mathbf{K}_{m} - \mathbf{K}_{n}) \cdot \mathbf{r}} d^{3}\mathbf{r} = \delta_{\mathbf{K}_{m}, \mathbf{K}_{n}}$$

Finite Basis Set Expansion with Plane Waves Hamiltonian Matrix

$$E\begin{pmatrix} u_{\mathbf{k}}[\mathbf{K}_{0}]\\ u_{\mathbf{k}}[\mathbf{K}_{1}]\\ u_{\mathbf{k}}[\mathbf{K}_{2}]\\ u_{\mathbf{k}}[\mathbf{K}_{3}] \end{pmatrix} = \begin{pmatrix} H_{00} & H_{01} & H_{02} & H_{03}\\ H_{10} & H_{11} & H_{12} & H_{13}\\ H_{20} & H_{21} & H_{22} & H_{23}\\ H_{30} & H_{31} & H_{32} & H_{33} \end{pmatrix} \begin{pmatrix} u_{\mathbf{k}}[\mathbf{K}_{0}]\\ u_{\mathbf{k}}[\mathbf{K}_{1}]\\ u_{\mathbf{k}}[\mathbf{K}_{2}]\\ u_{\mathbf{k}}[\mathbf{K}_{3}] \end{pmatrix}$$

$$H_{m,n} = \left\langle \frac{e^{i(\mathbf{k} + \mathbf{K}_{m}) \cdot \mathbf{r}}}{\sqrt{V_{\text{box}}}} \left| \frac{\hat{\mathbf{p}}^{2}}{2m} + V(\mathbf{r}) \right| \frac{e^{i(\mathbf{k} + \mathbf{K}_{n}) \cdot \mathbf{r}}}{\sqrt{V_{\text{box}}}} \right\rangle$$

$$H_{m,n} = \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K_n})^2 \delta_{\mathbf{K_m},\mathbf{K_n}} + \mathbf{V} [\mathbf{K_m} - \mathbf{K_n}]$$

Fourier Series coefficients for the lattice potential...

$$V[\mathbf{K}_{m}-\mathbf{K}_{n}] = \frac{1}{\mathbf{V}_{\mathsf{WSC}}} \int_{\mathbf{V}_{\mathsf{WSC}}} e^{-\mathbf{i}(\mathbf{K}_{m}-\mathbf{K}_{n}) \cdot \mathbf{r}} \mathbf{V}(\mathbf{r}) d^{3}\mathbf{r}$$

Finite Basis Set Expansion with Plane Waves Hamiltonian Matrix

$$H_{m,n} = \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K}_n)^2 \delta_{\mathbf{K}_m,\mathbf{K}_n} + \mathbf{V} [\mathbf{K}_m - \mathbf{K}_n]$$

$$E_{n}(\mathbf{k}) \begin{pmatrix} u_{\mathbf{k},\mathbf{n}}[\mathbf{K}_{0}] \\ u_{\mathbf{k},\mathbf{n}}[\mathbf{K}_{1}] \\ u_{\mathbf{k},\mathbf{n}}[\mathbf{K}_{2}] \\ u_{\mathbf{k},\mathbf{n}}[\mathbf{K}_{3}] \end{pmatrix} = \begin{pmatrix} \frac{\hbar^{2}}{2m}(\mathbf{k}+\mathbf{K}_{0})^{2} + \mathbf{V}[\mathbf{0}] & V[\mathbf{K}_{0}-\mathbf{K}_{1}] & V[\mathbf{K}_{0}-\mathbf{K}_{2}] & V[\mathbf{K}_{0}-\mathbf{K}_{3}] \\ V[\mathbf{K}_{1}-\mathbf{K}_{0}] & \frac{\hbar^{2}}{2m}(\mathbf{k}+\mathbf{K}_{1})^{2} + \mathbf{V}[\mathbf{0}] & V[\mathbf{K}_{1}-\mathbf{K}_{2}] & V[\mathbf{K}_{1}-\mathbf{K}_{3}] \\ V[\mathbf{K}_{2}-\mathbf{K}_{0}] & V[\mathbf{K}_{2}-\mathbf{K}_{1}] & \frac{\hbar^{2}}{2m}(\mathbf{k}+\mathbf{K}_{2})^{2} + \mathbf{V}[\mathbf{0}] & V[\mathbf{K}_{2}-\mathbf{K}_{3}] \\ V[\mathbf{K}_{3}-\mathbf{K}_{0}] & V[\mathbf{K}_{3}-\mathbf{K}_{1}] & V[\mathbf{K}_{3}-\mathbf{K}_{2}] & \frac{\hbar^{2}}{2m}(\mathbf{k}+\mathbf{K}_{3})^{2} + \mathbf{V}[\mathbf{0}] \end{pmatrix} \begin{pmatrix} u_{\mathbf{k},\mathbf{n}}[\mathbf{K}_{0}] \\ u_{\mathbf{k},\mathbf{n}}[\mathbf{K}_{2}] \\ u_{\mathbf{k},\mathbf{n}}[\mathbf{K}_{3}] \end{pmatrix}$$

Infinite Basis Set Expansion with Plane Waves Hamiltonian Matrix

$$\psi_{\mathbf{k},\mathbf{n}}(\mathbf{r}) = \sum_{\{\mathbf{K}_i\}} \mathbf{u}_{\mathbf{k},\mathbf{n}}[\mathbf{K}_i] \left(\frac{1}{\sqrt{V_{\mathsf{box}}}} \mathbf{e}^{\mathbf{i}(\mathbf{k} + \mathbf{K}_i) \cdot \mathbf{r}}\right)$$

$$a_{\mathbf{k},\mathbf{n}}(\mathbf{q}) = \sum_{\mathbf{K}_{\mathbf{i}}} \frac{1}{\sqrt{V_{\mathsf{box}}}} \mathbf{u}_{\mathbf{k},\mathbf{n}}[\mathbf{K}_{\mathbf{i}}]\delta(\mathbf{q} - (\mathbf{k} + \mathbf{K}_{\mathbf{i}}))$$

Infinite Basis Set Expansion with Plane Waves Hamiltonian Matrix

$$H_{m,n} = \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K_n})^2 \delta_{\mathbf{K_m},\mathbf{K_n}} + \mathbf{V} [\mathbf{K_m} - \mathbf{K_n}]$$

 $\lambda = \hbar^2/2m$

 $V[\mathbf{K}_{\mathbf{m}} - \mathbf{K}_{\mathbf{n}}] = \mathbf{V}_{\mathbf{m}-\mathbf{n}}$

$$\psi_{k,n}(\mathbf{r}) = \sum_{\{\mathbf{K}_i\}} \mathbf{u}_{k,n}[\mathbf{K}_i] \left(\frac{1}{\sqrt{V_{\text{box}}}} e^{\mathbf{i}(\mathbf{k} + \mathbf{K}_i) \cdot \mathbf{r}}\right)$$

Fourier transform
$$a_{k,n}(\mathbf{q}) = \sum_{\mathbf{K}_i} \frac{1}{\sqrt{V_{\text{box}}}} \mathbf{u}_{k,n}[\mathbf{K}_i] \delta(\mathbf{q} - (\mathbf{k} + \mathbf{K}_i))$$

Sample eigenvector...

$$a_{\mathbf{k},\mathbf{n}}(\mathbf{q}) \qquad \mathbf{k} = \frac{\pi}{\mathbf{a}}$$

 $\mathit{V}[\mathbf{K}_m-\mathbf{K}_n]\neq \mathbf{0}$

 $V[\mathbf{K}_{\mathbf{m}} - \mathbf{K}_{\mathbf{n}}] = \mathbf{0}$

 $a_{\mathbf{k},\mathbf{n}}(\mathbf{q}) \qquad \mathbf{k} = \mathbf{0}$

 $V[\mathbf{K}_{\mathbf{m}} - \mathbf{K}_{\mathbf{n}}] \neq \mathbf{0} \qquad \qquad V[\mathbf{K}_{\mathbf{m}} - \mathbf{K}_{\mathbf{n}}] = \mathbf{0}$

