
6.730 Physics for Solid State Applications

Lecture 4: Vibrations in Solids
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Microscopic Variables for Electrical TransportMicroscopic Variables for Electrical Transport
Drude Drude TheoryTheory

Balance equation for forces on electrons:

In steady-state when B=0:



Density of StatesDensity of States



Microscopic Variables for Electrical TransportMicroscopic Variables for Electrical Transport

Balance equation for energy of electrons:

In steady-state:

In the continuum models, we assume that electron scattering is 
sufficiently fast that all the energy pumped into the electrons is 
randomized; all additional energy heats the electrons

How do we relate ∆E and T ? 



Specific Heat and Heat CapacitySpecific Heat and Heat Capacity

Again assume that the heat and change in internal energy are the same:

(heat capacity)

Take constant volume since this ensures 
none of the extra energy is going into work
(think ideal gas)

(specific heat)

Specific heat is independent of temperature…Law of Dulong and Petit



Specific Heat MeasurementsSpecific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

Specific heat is independent of temperature…NOT TRUE !
To get this correct we will need to (a) quantize electron energy 
levels, (b) introduce discreteness of lattice and (c) the heat 
capacity of lattice
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Low Temperature Specific Heat of the Free Electron GasLow Temperature Specific Heat of the Free Electron Gas
SommerfeldSommerfeld ApproximationApproximation



Conductivity of the Free Electron GasConductivity of the Free Electron Gas
SommerfeldSommerfeld ApproximationApproximation

Only electrons near EF contribute to current !



Conductivity of the Free Electron GasConductivity of the Free Electron Gas
SommerfeldSommerfeld ApproximationApproximation

Sommerfeld recovers the phenomenological results !



SommerfeldSommerfeld ExpansionExpansion



SommerfeldSommerfeld Expansion for Electron DensityExpansion for Electron Density



SommerfeldSommerfeld Expansion for Electron EnergyExpansion for Electron Energy



Specific Heat MeasurementsSpecific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

To get this correct we will need to (a) quantize electron energy 
levels, (b) introduce discreteness of lattice and (c) the heat 
capacity of lattice



Density of States is the Central Character in this StoryDensity of States is the Central Character in this Story

Goal: Calculate electrical properties (eg. resistance) for solids

Approach:
In the end calculating resistance boils down to calculating the 
electronic energy levels and wavefunctions; to knowing the 
bandstructure

You will be able to relate a bandstructure to macroscopic 
parameters for the solid
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11--D Elastic ContinuumD Elastic Continuum
Stress and StrainStress and Strain

uniaxial loading

Lo

L
Stress:

Normal strain:Strain:

If ux is uniform there is no strain, just rigid body motion.



11--D Elastic ContinuumD Elastic Continuum
Young’s Modulus METALS :

Tungsten (W) 406
Chromium (Cr) 289
Berylium (Be) 200 - 289
Nickel (Ni) 214
Iron (Fe) 196
Low Alloy Steels 200 - 207
Stainless Steels 190 - 200
Cast Irons 170 - 190
Copper (Cu) 124
Titanium (Ti) 116
Brasses and Bronzes 103 - 124
Aluminum (Al) 69

PINE WOOD (along grain): 10

POLYMERS :
Polyimides 3 - 5
Polyesters 1 - 5
Nylon 2 - 4
Polystryene 3 - 3.4
Polyethylene 0.2 -0.7
Rubbers / Biological 
Tissues 0.01-0.1

Young’s Modulus

Young’s Modulus For Various Materials (GPa)
from Christina Ortiz

CERAMICS GLASSES AND SEMICONDUCTORS
Diamond (C) 1000
Tungsten Carbide (WC) 450 -650
Silicon Carbide (SiC) 450
Aluminum Oxide (Al2O3) 390
Berylium Oxide (BeO) 380
Magnesium Oxide (MgO) 250
Zirconium Oxide (ZrO) 160 - 241
Mullite (Al6Si2O13) 145
Silicon (Si) 107
Silica glass (SiO2) 94
Soda-lime glass (Na2O - SiO2) 69



Dynamics of 1Dynamics of 1--D ContinuumD Continuum
11--D Wave EquationD Wave Equation

Net force on incremental volume element:



Dynamics of 1Dynamics of 1--D ContinuumD Continuum
11--D Wave EquationD Wave Equation

Velocity of sound, c, is proportional to stiffness and inverse prop. to inertia



Dynamics of 1Dynamics of 1--D ContinuumD Continuum
11--D Wave Equation SolutionsD Wave Equation Solutions

Clamped Bar: Standing Waves



Dynamics of 1Dynamics of 1--D ContinuumD Continuum
11--D Wave Equation SolutionsD Wave Equation Solutions

Periodic Boundary Conditions: Traveling Waves



33--D Elastic ContinuumD Elastic Continuum
Volume DilatationVolume Dilatation

Lo Lapply load

Volume change is sum of all three normal strains



33--D Elastic ContinuumD Elastic Continuum
Poisson’s RatioPoisson’s Ratio

ν is Poisson’s Ratio – ratio of lateral strain to axial strain

Poisson’s ratio can not exceed 0.5, typically 0.3



33--D Elastic ContinuumD Elastic Continuum
Poisson’s Ratio ExamplePoisson’s Ratio Example

Aluminum: EY=68.9 GPa, ν = 0.35

20mm
75mm5kN

5kN
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33--D Elastic ContinuumD Elastic Continuum
Shear StrainShear Strain

Shear plus rotation
φ

φ

Pure shearShear loading

2φ

Pure shear strain

Shear stress

G is shear modulus



33--D Elastic ContinuumD Elastic Continuum
Stress and Strain TensorsStress and Strain Tensors

For most general isotropic medium,

Initially we had three elastic constants: EY, G, e

Now reduced to only two: λ, µ



33--D Elastic ContinuumD Elastic Continuum
Stress and Strain TensorsStress and Strain Tensors

If we look at just the diagonal elements

Inversion of stress/strain relation:



33--D Elastic ContinuumD Elastic Continuum
Example of Example of Uniaxial Uniaxial StressStress

Lo

L



Dynamics of 3Dynamics of 3--D ContinuumD Continuum
33--D Wave EquationD Wave Equation

Net force on incremental volume element:

Total force is the sum of the forces on all the surfaces



Dynamics of 3Dynamics of 3--D ContinuumD Continuum
33--D Wave EquationD Wave Equation

Net force in the x-direction:



Dynamics of 3Dynamics of 3--D ContinuumD Continuum
33--D Wave EquationD Wave Equation

Finally, 3-D wave equation….



Dynamics of 3Dynamics of 3--D ContinuumD Continuum
Fourier Transform of 3Fourier Transform of 3--D Wave EquationD Wave Equation

Anticipating plane wave solutions, we Fourier Transform the equation….

Three coupled equations for Ux, Uy, and Uz….



Dynamics of 3Dynamics of 3--D ContinuumD Continuum
Dynamical MatrixDynamical Matrix

Express the system of equations as a matrix….

Turns the problem into an eigenvalue problem for 
the polarizations of the modes (eigenvectors) and
wavevectors q (eigenvalues)….



Dynamics of 3Dynamics of 3--D ContinuumD Continuum
Solutions to 3Solutions to 3--D Wave EquationD Wave Equation

Transverse polarization waves:

Longitudinal polarization waves:



Dynamics of 3Dynamics of 3--D ContinuumD Continuum
SummarySummary

1. Dynamical Equation can be solved by inspection

2. There are 2 transverse and 1 longitudinal polarizations for each q

3. The dispersion relations are linear

4. The longitudinal sound velocity is always greater than 
the transverse sound velocity


