6.730 Physics for Solid State Applications

Lecture 8: Lattice Waves in 1D Monatomic Crystals

Outline

- Overview of Lattice Vibrations so far
- Models for Vibrations in Discrete 1-D Lattice
- Example of Nearest Neighbor Coupling Only
- Relating Microscopic and Macroscopic Quantities

Continuum Models

1-D Wave Equation

$$
\begin{aligned}
& \rho \frac{\partial^{2} u_{x}}{\partial t^{2}}=E_{Y} \frac{\partial^{2} u_{x}}{\partial x^{2}} \\
& \\
& \frac{\partial^{2} u_{x}}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u_{x}}{\partial t^{2}} \quad c=\sqrt{\frac{E_{Y}}{\rho}}
\end{aligned}
$$

Velocity of sound, \boldsymbol{c}, is proportional to stiffness and inverse prop. to inertia

Periodic Boundary Conditions: Traveling Waves

$$
u_{x}(x, t)=A_{ \pm} \exp (i k x) \exp (i \omega t) \quad \omega=c k
$$

Continuum Models

T^{3} Specific Heat
(hyperphysics.phy-astr.gsu.edu)

$$
C_{v}=C_{e l}+C_{p h o n o n}=\gamma T+A T^{3}
$$

The Atomistic Perspective

Arrangement of Atoms and Bond Orientations

CUBIC

$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma=90^{\circ}$

TETRAGONAL
$\mathrm{a}=\mathrm{b} \neq \mathrm{c}$
$\alpha=\beta=\gamma=90^{\circ}$

ORTHORHOMBIC
$a \neq b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$

HEXAGONAL
$\mathrm{a}=\mathrm{b} \neq \mathrm{c}$
$\alpha=\beta=90^{\circ}$
$\gamma=120^{\circ}$

TRIGONAL
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma \neq 90^{\circ}$

MONOCLINIC
$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$
$\alpha=\gamma=90^{\circ}$
$\beta \neq 120^{\circ}$

TRICLINIC
$a \neq b \neq c$
$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

4 Types of Unit Cell
$\mathbf{P}=$ Primitive
I = Body-Centred
F = Face-Centred
C=SideCentred
7 Crystal Classes
$\rightarrow \mathbf{1 4}$ Bravais Lattices

The Atomistic Perspective

Arrangement of Atoms and Bond Orientations

Diamond Crystal Structure: Silicon

Bond angle $=109.5^{\circ}$

- Add 4 atoms to a FCC
- Tetrahedral bond arrangement
- Each atom has 4 nearest neighbors and

12 next nearest neighbors

The Atomistic Perspective Vibrational Motion of Nuclei

$$
E_{\mathrm{r}}^{n 0} P_{n 0}(r)=\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+V_{\text {eff }}(r)\right] P_{n 0}(r)
$$

$$
V_{\text {eff }}(r)=V_{o}+\frac{1}{2}\left(r-R_{o}\right)^{2}\left(\frac{d^{2} V}{d r^{2}}\right)_{R_{o}}
$$

$$
E_{\mathbf{r}}^{n 0}=V_{o}+\hbar \omega_{o}\left(n+\frac{1}{2}\right)
$$

Strain in a Discrete Lattice

Example of Nearest Neighbor Interactions

$u[n, t]$ is the discrete displacement of an atom from its equilibrium position

Strain in a Discrete Lattice General Expansion

The potential energy associated with the strain is a complex function of the displacements.

$$
\begin{aligned}
V(\{u[i, t]\}) & =V_{o}+\sum_{m=-\infty}^{\infty}\left(\frac{\partial V}{\partial u[m, t]}\right)_{\mathrm{eq}} u[m, t] \\
& +\frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} u[n, t]\left(\frac{\partial^{2} V}{\partial u[n, t] \partial u[m, t]}\right)_{\mathrm{eq}} u[m, t]+\cdots
\end{aligned}
$$

where $\left.\quad V_{0}=V(\{u[i, t]\})\right)_{\mathrm{eq}}$
and the force on each lattice atom

$$
F[n, t]=-\left(\frac{\partial V}{\partial u[n, t]}\right)_{\mathrm{eq}} \quad \text { vanishes at equilibrium }
$$

Harmonic Matrix
 Spring Constants Between Lattice Atoms

$$
\begin{gathered}
V(\{u[i, t]\})=V_{o}+\frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} u[n, t]\left(\frac{\partial^{2} V}{\partial u[n, t] \partial u[m, t]}\right)_{\mathrm{eq}} u[m, t]+\cdots \\
\text { Harmonic Matrix: } \widetilde{D}(n, m)=\left(\frac{\partial^{2} V}{\partial u[n, t] \partial u[m, t]}\right)_{\mathrm{eq}}
\end{gathered}
$$

$$
\widetilde{D}(n, m)=\widetilde{D}(m, n) \quad \widetilde{D}(n, m)=\widetilde{D}(n-m) \quad \text { for infinite lattices }
$$

$$
V(\{u[i, t]\})=V_{o}+\frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} u[n, t] \widetilde{D}(n, m) u[m, t]
$$

Dynamics of Lattice Atoms

$$
V(\{u[i, t]\})=V_{o}+\frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} u[n, t] \widetilde{D}(n, m) u[m, t]
$$

Force on the $j^{\text {th }}$ atom (away from equilibrium)...

$$
\begin{aligned}
M \frac{d^{2}}{d t^{2}} u[j] & =-\frac{\partial}{\partial u[j]} V(\{u[i]\}) \\
& =-\frac{1}{2} \sum_{m=-\infty}^{\infty} \widetilde{D}(j, m) u[m]-\frac{1}{2} \sum_{n=-\infty}^{\infty} u[n] \widetilde{D}(n, j) \\
& =-\sum_{m=-\infty}^{\infty} \widetilde{D}(j, m) u[m]
\end{aligned}
$$

Solutions of Equations of Motion Convert to Difference Equation

$$
M \frac{d^{2}}{d t^{2}} u[n, t]=-\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) u[m, t]
$$

Time harmonic solutions...

$$
\tilde{u}[n, t]=\tilde{U}[n, \omega] e^{-i \omega t}
$$

Plugging in, converts equation of motion into coupled difference equations:

$$
M \omega^{2} \widetilde{U}[n]=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) \widetilde{U}[m]
$$

Solutions of Equations of Motion

$$
M \omega^{2} \widetilde{U}[n]=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) \widetilde{U}[m]
$$

We can guess solution of the form:

$$
\tilde{U}[p+1]=\tilde{U}[p] z^{-1} \quad \text { and } \quad \tilde{U}[p]=\tilde{U}[0] z^{-p}
$$

This is equivalent to taking the z-transform...

$$
\left\{\begin{array}{l}
M \omega^{2} \tilde{U}[0]=\left(\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) z^{n-m}\right) \tilde{U}[0] \\
M \omega^{2}=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) z^{n-m}
\end{array}\right.
$$

Solutions of Equations of Motion

 Consider Undamped Lattice Vibrations$$
M \omega^{2}=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) z^{n-m} \quad \tilde{U}[p]=\tilde{U}[0] z^{-p}
$$

We are going to consider the undamped vibrations of the lattice:

$$
\begin{aligned}
|U[m]| & =|U[n]| \\
|z| & =1 \\
z & =e^{-i k a}
\end{aligned}
$$

$$
\widetilde{u}[n, t]=\tilde{U}[0] e^{i(k n a-\omega t)}
$$

Solutions of Equations of Motion

Dynamical Matrix

$$
\begin{aligned}
& \begin{array}{rlrl}
M \omega^{2}=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) z^{n-m} & \tilde{u}[n, t] & =\widetilde{U}[0] e^{i(k n a-\omega t)} \\
z & =e^{-i k a}
\end{array} \\
& \longrightarrow \\
& M \omega^{2}=\sum_{m=-\infty}^{\infty} \widetilde{D}(n, m) e^{i k a(m-n)} v \\
& =\sum_{m=-\infty}^{\infty} \widetilde{D}(n-m) e^{i k a(m-n)} \\
& =\underbrace{\sum_{p=-\infty}^{\infty} \widetilde{D}(p) e^{-i k a p}}_{\text {Dynamical Matrix } D(k)}
\end{aligned}
$$

Solutions of Equations of Motion

Dynamical Matrix

$$
M \omega^{2}=D(k)=\underbrace{\sum_{p=-\infty}^{\infty} \widetilde{D}(p) e^{-i k a p}}_{\text {Dynamical Matrix } D(k)}
$$

$$
\begin{aligned}
& \widetilde{D}(n, m)=\left(\frac{\partial^{2} V}{\partial u[n, t] \partial u[m, t]}\right)_{\mathrm{eq}} \\
& \widetilde{D}(n, m)=\widetilde{D}(n-m)=\widetilde{D}(p)
\end{aligned}
$$

$$
\omega=\sqrt{\frac{D(k)}{M}}
$$

Strain in a Discrete Lattice

Example of Nearest Neighbor Interactions

$$
V=\sum_{p=-\infty}^{\infty} \frac{\alpha}{2}(u[p+1]-u[p])^{2}
$$

Strain in a Discrete Lattice

Example of Nearest Neighbor Interactions

$$
V=\sum_{p=-\infty}^{\infty} \frac{\alpha}{2}(u[p+1]-u[p])^{2}
$$

$$
\begin{aligned}
\widetilde{D}(n, m) & =\left(\frac{\partial^{2} V}{\partial u[n, t] \partial u[m, t]}\right)_{\mathrm{eq}} \\
& \left.=\frac{\partial}{\partial u[n, t]}\left(\sum_{p=-\infty}^{\infty} \alpha(u[p+1]-u[p])\left(\delta_{m, p+1}-\delta_{m, p}\right]\right)\right) \\
& =\frac{\partial}{\partial u[n, t]} \alpha(u[m]-u[m-1]-u[m+1]+u[m]) \\
& =\alpha\left(2 \delta_{n, m}-\delta_{n-1, m}-\delta_{n+1, m}\right) \\
& =\alpha\left(2 \delta_{n-m, 0}-\delta_{n-m, 1}-\delta_{n-m,-1}\right) \\
& =\widetilde{D}(n-m)
\end{aligned}
$$

Strain in a Discrete Lattice

Example of Nearest Neighbor Interactions

Harmonic matrix:

$$
\begin{gathered}
\widetilde{D}(n, m)=\left(\frac{\partial^{2} V}{\partial u[n, t] \partial u[m, t]}\right)_{\mathrm{eq}}=\alpha\left(2 \delta_{n-m, 0}-\delta_{n-m, 1}-\delta_{n-m,-1}\right) \\
\widetilde{D}(0)=2 \alpha \quad \text { and } \quad \widetilde{D}(\pm 1)=-\alpha
\end{gathered}
$$

Dynamical matrix:

$$
\begin{aligned}
& D(k)=\sum_{p=-\infty}^{\infty} \widetilde{D}(p) e^{-i k a p} \\
& \quad D(k)=2 \alpha-\alpha e^{-i k a}-\alpha e^{i k a}=2 \alpha(1-\cos k a)
\end{aligned}
$$

$$
D(k)=4 \alpha \sin ^{2}\left(\frac{k a}{2}\right)
$$

Strain in a Discrete Lattice

Example of Nearest Neighbor Interactions

$$
M \omega^{2}=D(k)=4 \alpha \sin ^{2}\left(\frac{k a}{2}\right)
$$

$$
\omega=2 \sqrt{\frac{\alpha}{M}}\left|\sin \left(\frac{k a}{2}\right)\right|
$$

Strain in a Discrete Lattice Example of Nearest Neighbor Interactions

$$
\omega=2 \sqrt{\frac{\alpha}{M}}\left|\sin \left(\frac{k a}{2}\right)\right|
$$

From what we know about Brillouin zones the points A and B (related by a reciprocal lattice vector) must be identical

$$
\omega(k)=\omega(k+n 2 \pi / a)
$$

This implies that the wave form of the vibrating atoms must also be identical.

Strain in a Discrete Lattice
 Example of Nearest Neighbor Interactions

But: note that point B represents a wave travelling right, and point A one travelling left

Strain in a Discrete Lattice
 Example of Nearest Neighbor Interactions

Consider point C at the zone boundary
When $\mathrm{k}=\pi / \mathrm{a}, \lambda=2 \mathrm{a}$, and motion becomes that of a standing wave (the atoms are bouncing backward and forward against each other

Strain in a Discrete Lattice
 Example of Nearest Neighbor Interactions

$$
\omega=2 \sqrt{\frac{\alpha}{M}}\left|\sin \left(\frac{k a}{2}\right)\right|
$$

In the limit of long-wavelength, we should recover the continuum model...

$$
\omega \underset{k \rightarrow 0}{\longrightarrow}\left(\frac{4 \alpha}{M}\right)^{1 / 2} \frac{a}{2} k
$$

Linear dispersion, just like the sound waves for the continuum solid

$$
\begin{gathered}
\omega=c_{s} k \quad \text { where } \quad c_{s}=\sqrt{\frac{E_{Y}}{\rho}} \\
\left(\frac{4 \alpha}{M}\right)^{1 / 2} \frac{a}{2}=\sqrt{\frac{E_{Y}}{\rho}} \\
\alpha=a E_{Y} \\
\omega_{M A X}=(4 \alpha / M)^{1 / 2}=2 c_{s} / a
\end{gathered}
$$

