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1. What is the crystal structure? 
 

The crystal is a cubic sphalerite or zincblende structure, which consists of a face centered 

cubic lattice and a basis.  The conventional basis consists of one GaAs molecule at the 

origin of the lattice.  The basis is defined by a vector from one atom of the molecule at 

(0,0,0) to the other atom at (¼, ¼, ¼).  The crystal can also be viewed as two FCC 

lattices, one of Ga and the other of As, offset by the basis vector. [1]  The crystal 

structure is shown below in Fig. 1.  Gallium atoms are shown in black and arsenic atoms 

are shown in red.  There are 14 gallium atoms shown, but only 4 arsenic atoms.  

However, given that 8 cells share each corner atom and 2 cells share each face atom, it is 

seen that there are actually 4 arsenic and 4 gallium atoms per cubic unit cell, i.e. 4 basis 

molecules per cell. 

  

                      

 

 

 

 

 

 

 

Figure 1.  FCC cubic unit cell of GaAs 

               
1. What is the lattice constant? 

 

At T=300 K, the lattice constant, i.e. the length along any side of the cube, is A=5.6325Å 

[1].  

 
2. What is the basis? 

 
As stated earlier, the basis consists of one Ga atom and one As atom.  The basis vector 

for GaAs is  
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where x̂ , ŷ , ẑ  are the cartesian unit vectors [2]. Fig. 2 shows the cubic unit cell again 

and a magnified view of the Ga-As basis. 

 

 

 

 

 

 

 

 

 
Figure 2.  GaAs lattice with a magnified view of the basis 

 
3. What are the primitive lattice vectors? 
 

Since the lattice is face-centered cubic, the primitive lattice vectors are those of an fcc 

lattice. They are: 
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The angle between any two primitive lattice vectors is o60 . 1ar , 2ar  and 3ar  span a 

rhombohedron of volume 
4

)(
3

321
Aaaa =×⋅

rrr .  Earlier, it was noted that there are 4 basis 

molecules per cubic unit cell.  Since a primitive unit cell has only 1 basis molecule, its 

volume should be ¼ of the cubic unit cell, which is exactly what the calculation indicates.  

Fig. 3 shows the primitive lattice vectors for an fcc lattice [3]. 

 



 

 

 

 

 

 

 

 

 
Figure 3.  Primitive lattice vectors with and without lattice points 

 
4. What is the structure of the reciprocal lattice? 

6. What are the primitive reciprocal lattice vectors?  
 

From the primitive lattice vectors defined above, the reciprocal lattice vectors are 

calculated as [2] 
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Performing the calculations indicated in Eq. (5), (6), and (7) with the values given in Eq. 

(2), (3), and (4) gives the following primitive reciprocal lattice vectors: 
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However, these are simply the primitive lattice vectors for a bcc lattice.  Thus, it is 

apparent that the structure of the reciprocal lattice is body-centered cubic. 



 The structure of the primitive reciprocal lattice can also be described in terms of 

its Wigner-Seitz cell.  The Wigner-Seitz cell is built in the following way.  Consider all 8 

vectors of the form )ˆˆˆ(2 zyx
A

±±±
π .  These are all reciprocal lattice vectors.  Draw 8 

planes normal to these 8 vectors at their midpoints.  The smallest volume enclosed in this 

manner is an octahedron.  The corners of the octahedron thus formed are also cut by the 

planes that are the perpendicular bisectors of 6 other reciprocal lattice vectors: )ˆ2(2 x
A

±
π ; 

)ˆ2(2 y
A

±
π ; )ˆ2(2 z

A
±

π  (these vectors are sums of vectors ib
r

and jb
r

 from above).  These 

planes form a cube, and therefore the Wigner-Seitz cell is a truncated octahedron in this 

cube. This Wigner-Sietz cell is usually referred to as the first Brillouin zone [3]. 

 The surface of the truncated octahedron has 6 square faces (the intersections with 

the 6 faces of the cube), and 8 hexagonal faces. The article, Huisinga, M., “Ultraviolet 

photoelectron spectroscopy and electron stimulated desorption from CaF2”, FU Berlin 

Digitale Dissertation shows the first Brillouin zone, with important points of symmetry 

on it. 

 
7. What are the atomic form factors for your material? 
 

The atomic form factor is the amplitude of the wave scattered by an atom normalized by 

the amplitude of the wave scattered by one electron.  The atomic form factor, f, is 

calculated as  
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where ρ  is the electron density and 
λ

θξ sin2
=  (θ  is the angle of diffraction) [5].  It is 

clear from Eq. (11) that 
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θsinff .  The atomic form factors for Ga and As for 

different values of 







λ
θsin  are given in Table 1 [6]. 

 



Table 1.  Ga and As atomic form factors 

λ
θsin  

 

0.0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

0.7 

 

0.8 

 

0.9 

 

1.0 

 

1.1 

 

1.2

Ga 31 27.8 23.3 19.3 16.5 14.5 12.7 11.2 10.0 8.9 7.9 7.3 6.7

As 33 29.7 25.0 20.8 17.7 15.6 13.8 12.1 10.8 9.7 8.7 7.9 7.3

 

The atomic form factors for Ga and As are approximately equal.  The phenomenon can 

be explained by noting that in the molecule GaAs the “ions” Ga −  and As +  have the same 

number Z of electrons. 

 



 

1. Provide pictures of the crystal in the [100], [110], and [111] 
planes.  
 

 

 

 

From the primitive lattice vectors defined above, the reciprocal lattice vectors are 

calculated as 

 The structure factor for a lattice of atoms is 
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Figure 5.  Crystal in the [100], [110], and [111] planes 

 
 
 
 
 
 
 
 



1. Indicate the vertical positions of atoms with respect to the 
plane. 

                                                         
                                                         0            ½            0 
                                                               
                                                                ¾           ¼  
            ¼ 

               ½            0            ½  
3 
                                                                ¼           ¾ 
 
                0            ½            0  
 

Figure 5.  Vertical positions of atoms with respect to the bottom face of the cube [3] 
  
1. Provide pictures of the reciprocal lattice in the [100], [110], and 
[111] planes.  

                                    
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.  Reciprocal lattice in the [100], [110], and [111] planes 
 



 
2. Calculate the structure factors.  
 

The structure factor for a lattice of atoms is given as [6] 
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where the summation is over the atoms in the unit cell; h, k, l are the Miller indices; and 

u, v, w are the fractional coordinates with respect to the cubic cell lattice vectors.  Eq. 

(12) can be further simplified by separating out the basis and the lattice.  For GaAs, this 

yields 

( )( ) ( )( ) ( )( )[ ] ( ) 





















 +++++++++= lkhifflkilhikhiF AsGahkl 2

exp1expexpexp1 ππππ  

(13) 
The structure factor in Eq. (13) is separated into two terms.  The first term is based only 

on the geometry of the lattice.  It is observed that if h, k, and l are mixed in terms of even 

and odd, this term will be identically zero; otherwise, it will be 4.  The second term is 

based on the basis.  The coefficient on the gallium form factor is either 1, i, -1, or –i, 

depending on the sum of h, k, and l.  Thus, the structure factor can take on the values: 

( )AsGa ff ±4 , ( )AsGa iff ±4 , and 0.  As mentioned earlier, the form factors will be angle 

dependent and thus vary for the different reciprocal lattice vectors.  The structure factors 

for the reciprocal lattice vectors of interest are shown in Table 3 under Question 4. 

 
3. Describe qualitatively an experimental set-up you could use to 

determine the crystal structure of your material by x-ray 
diffraction.  

 
Summary of experimental method:  
 
X-ray method: 
Powder diffraction method 
 
Operating wavelength:  
1.5418A from Kα emission of Cu source 
 
Possible CMSE facilities:  
RIGAKU 18kW Watt Rotating Anode X-ray Generator (Copper anode) Port #2 
RIGAKU 12kW Watt Rotating Anode X-ray Generator (Copper anode) Port #1 

  



 
Commonly used x-ray diffraction methods include the Laue method, the rotating-crystal 

method and the powder method.  The Laue method was the first diffraction method ever 

used, and it satisfies the Bragg condition by continuously varying the wavelength of the 

incident beam during the experiment.  The incident angle is fixed.  On the other hand, the 

rotating-crystal and the powder methods use a monochromatic source but have the 

incident angle vary from 0° to 90°.  Because of the different experimental setups, the 

Laue method usually serves to determine crystal orientation and assess crystal quality.  

The single crystal and the powder methods are generally used to determine unknown 

crystal structures. 

Although the single crystal method is more powerful and sophisticated, it is also 

more complicated to use.  A single scan with the crystal rotated only about one axis does 

not cover the Bragg angle from 0° to 90° for all possible planes, such as those 

perpendicular to the rotation axis.  A more complete analysis would require successive 

rotation about other axes.  It is therefore easier to use the powder diffraction method, 

which can also determine the structure of GaAs. 

The powderized specimen of GaAs is placed in a holder, which rotates about an 

axis.  The random orientation of the individual crystals in the specimen ensures the 

exposure of all possible planes during a single scan.  The angle θ between the 

monochromatic incident beam and the lattice planes varies because of the random 

orientation of the planes.  At particular instances, a set of lattice planes will make the 

correct Bragg angle with the incident beam to satisfy the diffraction condition  

θλ sin2 ,, lkhdn =       (14) 

where n is equal to 1 for first order diffraction, and d is the spacing between the lattice 

planes with Miller indices [hkl].  The schematic of the diffractometer is shown in Fig. 7.  

It should be noted that while the crystal axis is rotated by θ, the detector arm is moved by 

2θ.   

 

 

 

 
 



 
            
            
            
            
            
            
            
     

 
 
 
 
 

Figure 7: Experimental setup of the powder method. Angle θ varies from 0° to 90°.  [7] 
 

3. Specify what wavelength(s) of x-ray is (are) necessary in your 
set-up. 

  

The wavelength of the incident beam λ should satisfy the condition  

λ < 2dh,k,l        (15) 

This follows naturally from the Bragg condition in Eq. (14) since sinθ  is always less than 

1.  Here, the lattice spacing d will range from 1 to 6Å, which means λ should not exceed 

2Å.  Some commonly used x-ray sources and the corresponding wavelengths are listed in 

Table 2 [6].   

 
Table 2.  Commonly used x-ray K wavelengths 

 

Sources Wavelength [Å] 
 Kα1 Kα2 Kα (weighed average) 

Cr 2.28970 2.293606 2.29100 
Fe 1.936042 1.939980 1.937355 
Co 1.788965 1.792850 1.790260 
Cu 1.540562 1.544390 1.541838 
Mo 0.709300 0.713590 0.710730 

 
Copper is a suitable choice for this experiment because its Kα characteristic wavelength 

at 1.5418Å satisfies the requirements.  In addition, it is the most commonly used.  JCPDS 

files for a copper source are readily available, and the diffractometers in the CMSE are all 

fitted with a copper anode.   
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3. What centrally shared facilities in the Center for Materials 
Science and Engineering would be good for your material . 

  
Since it is assumed that the GaAs is in bulk form, it is not necessary to have a 

diffractometer that can perform glancing angle/small angle analysis.  The RIGAKU 

18kW Watt unit (Port #2) or the RIGAKU 12kW Watt unit (Port #1) fitted with a copper 

anode would be a good choice. 

 
4. Calculate the ratio of the intensities expected for the following 

lines of the diffraction pattern with respect to the [111] line: 
[100], [200], [220], [311] and [400]. 

 
The relative intensity of the diffraction lines are determined by three major factors:  

(1) the structure factor F described earlier 

(2) the Lorentz factor, which arises due to the fact that the intensity of 

diffraction is still appreciable at angles slightly different from the Bragg 

angle 

(3) the multiplicity factor p, which accounts for the fact that planes with 

different orientation can give rise to the same reflection if they have equal 

spacing. For instance, in a cubic structure, both [010] and [001] will 

contribute to the [100] reflection. 

The intensity relation is given in Eq. (16) [6].   
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where I is the integrated intensity, F is the structure factor, p is the multiplicity factor, 

and θ  is the Bragg angle. The ratio in parenthesis is the Lorentz factor.  It should be 

noted that two other factors, the temperature and absorption factors, that affect the 

intensity are not included in Eq. (16).  Their effects have opposite dependence on θ and 

thus, to a first approximation, cancel each other.  Table 3 shows the calculated GaAs 

intensities for the different lines. 

 

 

 



Table 3.  Calculated intensities for different lines of diffraction for GaAs 
 

Line Distance 

[Å] 

θ 
λ

θsin  
fGa fAs 2F  p Lorentz 

factor 

Normalized

Intensity 

[111] 3.264 13.7° 0.1532 25.41 27.20 22165 8 33.01 100 

[100] 5.653 7.84° 0.0884 28.17 30.08 0 6 104.6 0 

[200] 2.827 15.8° 0.1769 24.34 26.09 48.788 6 24.10 0.121 

[220] 1.999 22.7° 0.2502 21.29 22.89 31240 12 10.88 69.7 

[311] 1.704 26.9° 0.2933 19.57 21.08 13235 24 7.396 40.1 

[400] 1.413 33.1° 0.3538 17.79 19.13 21818 6 4.668 10.4 

 

For each line, the distance between planes is computed.  From this distance, λ
θsin  is 

then computed. Using the value of λ=1.5418Å, θ and the Lorentz factor are calculated.  

The structure factor F is computed as described earlier.  The form factors fGa and fAs are 

obtained from Appendix 12 [6].  The actual numbers used here are obtained through a 

linear interpolation between values in the appendix table.  The multiplicity factor p is 

given in Appendix 13 [6].  In the literature, the line intensities for GaAs are normalized 

with respect to the [111] line as it is in Table 3. 

 
5. What are the ratios if the material were Si? How could you use 

this information to distinguish Si from your material by x-ray 

diffraction? 
 

Table 4 shows the experimental line intensities for silicon [8] as well as the 

previously calculated intensities for gallium arsenide.  It is clear that the experimental 

line intensities for Si and GaAs are not drastically different.  The relative ordering of 

the line intensities is the same and the relative magnitudes are somewhat similar as 

well.   

 

 

 

 



Table 4. Comparison of experimental Si and calculated GaAs intensities 
 

Line Experimental Intensity 

Si 

Calculated Intensity 

GaAs 

[111] 100 100 

[100] – 0 

[200] – 0.121 

[220] 60 69.7 

[311] 35 40.1 

[400] 8 10.4 

 

 The difference between the two becomes even smaller when the experimental 

data for GaAs (taken from [9]) is used, as shown in Table 5.   
 

Table 5. Comparison of experimental Si and experimental GaAs intensities 
 

Line Experimental Intensity 

Si 

Experimental Intensity 

GaAs 

[111] 100 100 

[100] – – 

[200] – – 

[220] 60 61 

[311] 35 29 

[400] 8 7 

 

 Thus, using the line intensities to distinguish Si from GaAs would require that the 

x-ray diffractometry be done quite carefully with little experimental error.  However, 

this level of precision may be obtained in a laboratory, and thus the two crystals could 

be distinguished by comparing line intensities.  The line intensity depends quite 

strongly on the geometry of the crystal lattice.  Like GaAs, Si also has an fcc lattice 

with a lattice constant of 5.4309Å, compared to 5.6325Å for GaAs.  This similarity 

helps to explain why the two crystals have such similar line intensities. 



6. Compare your calculations of the x-ray ratios with experimental 

data for your material.  Comment on the comparison. 
 
Table 6 shows the comparison between experimental and calculated line intensities.  

 
 
 

Table 6. Comparison of experimental and calculated GaAs intensities 
 

Line θ Experimental Intensity 

GaAs 

Calculated Intensity 

GaAs 

Percent 

Error 

[111] 13.7° 100 100 – 

[100] 7.84° – 0 – 

[200] 15.8° – 0.121 – 

[220] 22.7° 60 69.7 14.2% 

[311] 26.9° 35 40.1 38.4% 

[400] 33.1° 8 10.4 49.1% 

 

The agreement between the two is not particularly good, but this is to be expected.  As 

mentioned earlier, the temperature and absorption factors have been neglected.  These 

factors become increasingly important as the Bragg angle increases.  Therefore, the error 

in this first order calculation should increase with θ, which is what is observed here.  

There are many other factors that have not been taken into account. In addition, there is 

some variation in the published experimental data.  With this in mind, one can see that 

the agreement between calculated and experiment line intensities is acceptable. 
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