SMA5111 - Compound Semiconductors

Lecture 9 - <u>Metal-Semiconductor FETs</u> - Outline

• Device structure and operation

Concept and structure: General structure Basis of operation; device types Terminal characteristics Gradual channel approximation w. o. velocity saturation Velocity saturation issues Characteristics with velocity saturation Small signal equivalent circuits High frequency performance

• Fabrication technology

Process challenges: (areas where heterostructures can make life easier and better) 1. Semi-insulating substrate; 2. M-S barrier gate; 3. Threshold control; 4. Gate resistance; 5. Source and drain resistances

Representative sequences:

1. Mesa-on-Epi; 2. Proton isolation; 3. n+/n epi w. recess;

4. Direct implant into SI-GaAs

C. G. Fonstad, 3/03

BJT/FET Comparison - cont.

OK, that's nice, but there is more to the \Box difference than how the barrier is controlled \Box

	BJT	FET
Charge	minority	majority
<u>carriers</u>	in base	in channel
Flow	diffusion	drift
mechanism	in base	in channel
Barrier	direct contact	change induced
control	made to base	by gate electrode

The nature of the current flow, minority diffusion vs majority drift, is perhaps the most important difference.

FET Mechanisms - MOSFET and JFET/MESFET

Junction Field Effect Transistor (JFET)

Reverse biasing the gate-source junction increases depletion width under gate and constricts the n-type conduction path between the source and drain.

C. G. Fonstad, 3/03

Ref: Fonstad, Mircoelectronic Devices and Circuits, Chap. 10 - posted on SMA5111 Website

MEtal Semiconductor FET - MESEET

The operation is very similar to that of a JFET. The p-n junction gate is replaced by a Schottky barrier, and the lower contact and p-n junction are eliminated because the lightly doped ptype substrate is replaced by a semi-insulating substrate.

C. G. Fonstad, 3/03

MESFET current-voltage (i-v) characteristic

We have two currents, i_G and i_D , that we want to determine as functions of the two voltages, v_{GS} and v_{DS} :

$$i_g(v_{gs}, v_{ds})$$
 and $i_d(v_{gs}, v_{ds})$

If we restrict our model to drain-to-source voltages greater than zero, and gate-to-source voltages less than the turn-on voltage of the gate Schottky diode, then, say that the gate current is negligible and $i_G \approx 0$:

$$i_g(v_{gs}, v_{ds}) \approx 0$$
 if $v_{gs} \leq V_{on}$, and $v_{ds} \geq 0$.

Our real problem then is to find an expression for the drain current, i_D. The path for the drain current is through the channel to the source, and we model it using the gradual channel approximation (next slide).

MESFET current-voltage (i-v) characteristic

The model used to describe the drain current-voltage expression for an FET is the <u>Gradual Channel Approximation</u>. In this model we assume the current flow in the channel is entirely in the y-direction, and that the field lines terminating on the gate are entirely vertical.

C. G. Fonstad, 3/03

MESFET i-v: gradual channel approximation

If the Gradual Channel Approximation is valid we can solve two independent 1-d problems in sequence:

(1) an <u>electrostatics problem in the vertical (x-) direction</u> to find

the mobile charge sheet density at any point, y, in the \square channel; \square

(2) a <u>drift problem in the horizontal (y-) direction</u> to relate the voltage drop along the channel to the current. We integrate this relation from y = 0 to y = L to get the final expression relating the drain current to the gate and drain voltage.

C. G. Fonstad, 3/03

MESFET i-v: vertical electrostatics problem

The sheet carrier density at the position y along the channel is:

$$N_{ch}(y) = N_{Dn} \left[a - x_d(y) \right]$$

And the depletion width there is:

$$x_d(y) = \sqrt{2\varepsilon_s \left\{ \phi_b - \left[v_{GS} - v_{CS}(y) \right] \right\} / q N_{Dn}}$$

Combining these yields: $N_{ch}(y) = N_{Dn} \left[a - \sqrt{2\varepsilon_s \left\{ \phi_b - \left[v_{GS} - v_{CS}(y) \right] \right\} / q N_{Dn}} \right]$

This is the information we wanted to get from the vertical problem.

Lecture 9 - Slide 11

C. G. Fonstad, 3/03

MESFET i-v: horizontal drift current problem

• Define v_{CS}(y) as the voltage in the channel relative to the source at y.

 $v_{CS}(y)$ varies from v_{DS} at y = L to 0 at y = 0the horizontal E-field in the channel, E_y , is - $dv_{CS}(y)/dy$

- \Box The drain current, i_D , flows right to left in the channel:
 - i_D is a constant and is not a function of y
 - Tat any y, i_D is the <u>sheet charge density</u> at that y, times its <u>net drift velocity</u>, times the <u>channel width</u>

C. G. Fonstad, 3/03

MESFET i-v: horizontal drift current problem, cont

We write thus the current as:

$$i_{\scriptscriptstyle D} = - \left[-q N_{\scriptscriptstyle ch}(y) \cdot W \cdot \overline{s_y}(y) \right]$$

where -q is the charge per carrier; W is the channel \Box width; and $N_{ch}(y)$ is the sheet carrier density at point y along the channel, which we have already determined \Box by solving the vertical electrostatics problem: \Box

$$N_{ch}(y) = N_{Dn} \left[a - \sqrt{2\varepsilon_s \left\{ \phi_b - \left[v_{GS} - v_{CS}(y) \right] \right\} / q N_{Dn}} \right]$$

In the low- to moderate-field region, the average net carrier velocity in the y-direction is the drift velocity:

$$\overline{s_y}(y) = -\mu_e F_y(y) = \mu_e \frac{dv_{CS}(y)}{dy}$$

C. G. Fonstad, 3/03

MESFET i-v: horizontal drift current problem, cont

Putting this all together we get:

$$i_{D} = -qN_{Dn} \left[a - \sqrt{2\varepsilon_{S} \left\{ \phi_{b} - \left[v_{GS} - v_{CS}(y) \right] \right\}} / qN_{Dn} \right] \cdot W \Box \mu_{e} \frac{dv_{CS}(y)}{dy} \Box$$

We rearrange terms, multiply by dy, and integrate each side from y = 0, $v_{CS} = 0$, to v = L, $v_{CS} = v_{DS}$:

$$\int_{0}^{L} \vec{u}_{D} dy \equiv \mu_{e} q N_{Dn} W \int_{0}^{v_{DS}} \left[a - \sqrt{\frac{2\varepsilon_{S}}{qN_{Dn}}} \left(\phi_{b} - \left[v_{GS} - v_{CS}(y) \right] \right)^{1/2} \right]^{U} dv_{CS}$$

Doing the integrals, and dividing both sides by L yields:

$$i_{D} = a \frac{W}{L} q \mu_{e} N_{Dn} \left\{ v_{DS} - \frac{2}{3} \sqrt[n]{\frac{2\varepsilon_{S}}{qN_{Dn}a^{2}}} \left[\left(\phi_{b} - v_{GS} + v_{DS} \right)^{3/2} - \left(\phi_{b} - v_{GS} \right)^{3/2} \right] \right\}$$

C. G. Fonstad, 3/03

MESFET i-v: linear or triode region

Our result thus far:

$$i_{D} = a \bigoplus_{L}^{W} q \mu_{e} N_{Dn} \left\{ v_{DS} - \frac{2}{3} \bigoplus_{R} \frac{2\varepsilon_{S}}{q N_{Dn} a^{2}} \left[\left(\phi_{b} - v_{GS} + v_{DS} \right)^{3/2} - \left(\phi_{b} - v_{GS} \right)^{3/2} \right] \right\}^{\Box}$$

is only valid until $x_d(y) = a$, which occurs at y = L when

MESFET i-v: saturation region

For larger v_{DS} , i.e. when: $v_{DS} > v_{GS} - (\phi_b - qN_{Dn}a^2/2\varepsilon_S)$

The current, i_D, stays constant at the peak value, which is:

MESFET i-v: summary of characteristics

We identify the pinch-off voltage, V_P , and undepleted channel conductance, G_o : $V_p \equiv (\phi_b - qN_{Dn}a^2/2\varepsilon_s) \square \quad G_o \equiv a \frac{W}{L} q\mu_e N_{Dn}$

We can then write the drain current, i_D, for each of the three regions:

Cutoff:
When
$$(v_{GS} - V_{PD}) \le 0 \le v_{DS}, i_D = 0$$

When v_{GS} < V_P the channel is
pinched off for all v_{DS}, and the device is cut-off,iI.e., i_D = 0.

Saturation: When $0 \le (v_{GS} - W_P) \le v_{DS}, i_D = G_o \left\{ (v_{GS} - V_P) - \frac{2}{3} \left[\frac{(\phi_b - V_P)^{3/2} - (\phi_b - v_{GS})^{3/2}}{(\phi_b - V_P)^{1/2}} \right] \right\}$

$$\begin{aligned} \text{Linear:} \\ When \ 0 \le v_{DS} \le (v_{GS} - V_P), i_D = G_o \left\{ v_{DS} - \frac{2}{3} \left[\frac{(\phi_b - v_{GS} + v_{DS})^{3/2} - (\phi_b - v_{GS})^{3/2}}{(\phi_b - W_P)^{1/2}} \right] \right\} \end{aligned}$$

C. G. Fonstad, 3/03

MESFET characteristics - channel-length modulation

In practice we find that i_D increases slightly with v_{DS} in saturation. This is because the effective channel length decreases with increasing v_{DS} above pinch-off. We model this by saying $L \rightarrow L(1 - \lambda v_{DS})$

which means $1/L \rightarrow (1 + \lambda v_{DS})/L$ and consequently $G_a \rightarrow (1 + \lambda v_{DS})G_a$ D **Slope exagerated** for emphasis Approx. extrapolation $-1/\lambda = -V_A$ Note: The parameter λ has the units of inverse voltage, and by convention its inverse is called the Early voltage: Early voltage, $V_A \equiv 1/\lambda$

C. G. Fonstad, 3/03

Large signal model: Enhancement mode FETs

- In our discussion thus far we have indicated that there is a conducting channel between the source and drain when the gate is unbiased, I.e., when $v_{GS} = 0$. Such a device is called a "depletion mode" FET.
- If the doped layer under the gate is thin enough and/or lightly doped, is possible that the it will be fully depleted when the gate is unbiased. Such a device is called an <u>enhancement mode</u> FET (this is the type of FET most typical of MOSFETs).□

The gate of an enhancement mode MESFET must be <u>forward biased</u> to open the channel and turn it on.

Clearly an enhancement mode MESFET can not be turned on very much before the gate diode begins to connect. This is an important limitation, and important difference between MOSFETs and MESFETs.

MESFET - linear equivalent circuit

C. G. Fonstad, 3/03

MESFET - linear equivalent circuit, cont

The equations on the previous foil are mathematical identities; they tell us nothing about the physics of the device. That comes from using our model to evaluate the derivatives. We want a model to use when the FET is biased in saturation, so we use the current expressions there:

(**Remember** $i_G = 0$, so g_i and g_r are zero.)

$$g_{i} = \frac{\partial i_{G}}{\partial v_{GS}} \Big|_{Q} = 0 \qquad g_{r} = \frac{\partial i_{G}}{\partial v_{DS}} \Big|_{Q} = 0$$
$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \Big|_{Q} = G_{o} \left[1 - \sqrt{\frac{(\phi_{b} - v_{GS})}{(\phi_{b} - V_{P})}} \right]$$
$$g_{o} = \frac{\partial i_{D}}{\partial v_{DS}} \Big|_{Q} \approx \lambda I_{D} = I_{D} / V_{A}$$

C. G. Fonstad, 3/03

Linear equivalent circuit models - schematics

A circuit representation of these results is:

To extend this model to high frequencies we introduce small signal linear capacitors representing the charge stored on the gate:

More on this later.

C. G. Fonstad, 3/03

The velocity saturation issue for MESFETs

(Images deleted)

See Fig. 4-10-4: Shur, M. S., Physics of Semiconductor Devices Englewood Cliffs, N.J.: Prentice-Hall, 1990

Velocity saturation models - impact on MESFET i-v

C. G. Fonstad, 3/03

Impact of velocity saturation - Model A*

C. G. Fonstad, 3/03

Impact of velocity saturation - Model B*

Model B $s_y(F_y) \Box = \Box \frac{\mu_e F_y}{1 + \frac{F_y}{F_{crit}}}$

It is easy to show that the expression we derived in the linear region with no velocity saturation becomes with this model:

$$\begin{split} i_{D_{o}} &= \frac{1}{1 + v_{DS}/F_{crit}L} G_{o} \left\{ v_{DS} - \frac{2}{3} \left[\frac{\left[\left(\phi_{b} - \overline{v}_{GS} + v_{DS} \right)^{3/2} - \left[\left(\phi_{b} - \overline{v}_{GS} \right)^{3/2} \right] \right] \right\} \\ &= \left[\left(\phi_{b} - \overline{v}_{P} \right)^{1/2} - \left[\left(\phi_{b} - \overline{v}_{P} \right)^{1/2} \right] \right] \right\} \\ &= when \ 0 \le v_{DS_{o}} \le \left[\left(\overline{v}_{GS} - \overline{v}_{P} \right) \right] \end{split}$$

This is the original expression multiplied by the factor $1/(1+v_{DS}/F_{crit}L)$

C. G. Fonstad, 3/03

High f models and $f_{\setminus\square}$

C. G. Fonstad, 3/03

A mushroom- or T-gate MESFET

(Image deleted)

See Hollis and Murphy in: Sze, S.M., ed., High Speed Semiconductor Devices New York: Wiley 1990

Representative processing sequences for MESFETs

Double recess process

(Image deleted)

(Image deleted)

See Hollis and Murphy in: Sze, S.M., ed., High Speed Semiconductor Devices New York: Wiley 1990