MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776 High Speed Communication Circuits Lecture 23

Design of Fractional-N Frequency Synthesizers and Bandwidth Extension Techniques

> Michael Perrott Massachusetts Institute of Technology May 4, 2005

Copyright © 2005 by Michael H. Perrott

Outline of PLL Lectures

- Integer-N Synthesizers
 - Basic blocks, modeling, and design
 - Frequency detection, PLL Type
- Noise in Integer-N and Fractional-N Synthesizers
 - Noise analysis of integer-N structure
 - Sigma-Delta modulators applied to fractional-N structures
 - Noise analysis of fractional-N structure
- Design of Fractional-N Frequency Synthesizers and Bandwidth Extension Techniques
 - PLL Design Assistant Software
 - Quantization noise reduction for improved bandwidth and noise

Design of Frequency Synthesizers

- Focus on fractional-N architecture since it is essentially a "super set" of other PLL synthesizers
 - If we can design this structure, we can also design classical integer-N systems

Frequency-domain Model

Perrott et. al. JSSC, Aug. 2002

Closed loop dynamics parameterized by

$$G(f) = \frac{A(f)}{1 + A(f)} \quad \text{where} \quad A(f) = \frac{\alpha I_{cp} H(f) K_V}{N_{nom} 2\pi j f}$$

M.H. Perrott

MIT OCW

4

Review of Classical Design Approach

Given the desired closed-loop bandwidth, order, and system type:

- **1.** Choose an appropriate topology for H(f)
 - Depends on order, type
- 2. Choose pole/zero values for H(f) as appropriate for the required bandwidth
- 3. Adjust the open-loop gain to achieve the required bandwidth while maintaining stability
 - Plot gain and phase bode plots of A(f)
 - Use phase (or gain) margin criterion to infer stability

Example: First Order, Type I with Parasitic Poles

First Order, Type I: Frequency and Step Responses

Limitations of Open Loop Design Approach

- Constrained for applications which require precise filter response
- Complicated once parasitic poles are taken into account
- Poor control over filter shape
- Inadequate for systems with third order rolloff
 - Phase margin criterion based on second order systems

Closed loop design approach:

Directly design G(f) by specifying dominant pole and zero locations on the s-plane (pole-zero diagram)

Closed Loop Design Approach: Overview

- G(f) completely describes the closed loop dynamics
 - Design of this function is the ultimate goal

Closed Loop Design Approach

- Instead of indirectly designing G(f) using plots of A(f), solve for G(f) directly as a function of specification parameters
- Solve for A(f) that will achieve desired G(f)
- Account for the impact of parasitic poles/zeros

Closed Loop Design Approach: Implementation

- Download PLL Design Assistant Software at http://www-mtl.mit.edu/research/perrottgroup/tools.html
- Read accompanying manual
- Algorithm described by C.Y. Lau et. al. in "Fractional-N Frequency Synthesizer Design at the Transfer Function Level Using a Direct Closed Loop Realization Algorithm", Design Automation Conference, 2003

PLL Design Assistant

M.H. Perrott

MIT OCW 11

Definition of Bandwidth, Order, and Shape for G(f)

- Bandwidth f_o
 - Defined in asymptotic manner as shown
- Order n
 - Defined according to the rolloff characteristic of G(f)
- Shape
 - Defined according to standard filter design methodologies
 - Butterworth, Bessel, Chebyshev, etc.

Definition of Type

- Type I: one integrator in PLL open loop transfer function
 - VCO adds on integrator
 - Loop filter, H(f), has no integrators
- Type II: two integrators in PLL open loop transfer function
 - Loop filter, H(f), has one integrator

Loop Filter Transfer Function Vs Type and Order of G(f)

H(s) Topology For Different Type and Orders of G(f)

Calculated from software

- Practical PLL implementations limited to above
 - Prohibitive analog complexity for higher order, type
- Open loop gain, K, will be calculated by algorithm

 Loop filter gain related to open loop gain as shown above MIT OCW

14

Passive Topologies to Realize a Second Order PLL

 DAC is used for Type I implementation to coarsely tune VCO

Allows full range of VCO to be achieved

Passive Topologies to Realize a Third Order PLL

Inductor is necessary to create a complex pole pair
 Must be implemented off-chip due to its large value

Problem with Passive Loop Filter Implementations

- Large voltage swing required at charge pump output
 - Must support full range of VCO input
- Non-ideal behavior of inductors (for third order G(f) implementations)
 - Hard to realize large inductor values
 - Self resonance of inductor reduces high frequency attenuation

Alternative: active loop filter implementation

Guidelines for Active Loop Filter Design

- Use topologies with unity gain feedback in the opamp
 - Minimizes influence of opamp noise

- Perform level shifting in feedback of opamp
 - Fixes voltage at charge pump output

Prevent fast edges from directly reaching opamp inputs

Will otherwise cause opamp to be driven into nonlinear region of operation

Active Topologies To Realize a Second Order PLL

- Follows guidelines from previous slide
- Charge pump output is terminated directly with a high Q capacitor
 - Smooths fast edges from charge pump before they reach the opamp input(s)

Active Topologies To Realize a Third Order PLL

Follows active implementation guidelines from a few slides ago

M.H. Perrott

MIT OCW 20

Example Design

- Type II, 3rd order, Butterworth, $f_o = 300$ kHz, $f_z/f_o = 0.125$
 - No parasitic poles
- Required loop filter transfer function can be found from table:

$$\Rightarrow H(s) = \frac{K_{LF} \left(1 + \frac{s}{w_z}\right)}{s \left(1 + \frac{s}{w_p Q_p} + \left(\frac{s}{w_p}\right)^2\right)} \quad \text{where}$$
$$K_{LF} = \frac{N_{nom} K}{\alpha I_{cp} K_v}$$

Use PLL Design Assistant to Calculate Parameters

$$H(s) = \frac{K_{LF} \left(1 + \frac{s}{w_z} \right)}{s \left(1 + \frac{s}{w_p Q_p} + \left(\frac{s}{w_p} \right)^2 \right)} \quad \text{where} \quad K_{LF} = \frac{N_{nom} K}{\alpha I_{cp} K_v}$$

Dynamic Parameters	paris. pole		Hz	On	Noise Parameters			
fo 300e3 Hz	paris. Q			On	ref. freq	Hz		
order C1 C2 @ 3	paris. pole		Hz	On	out freq.	Hz		
shape 💿 Butter 🔿 Bessel	paris. Q			On				
C Cheby1 C Cheby2 C Elliptical	paris. pole		Hz	On		aBc/Hz Un		
ripple dB	paris. pole		Hz	On		dBc/Hz On		
type C1 @ 2	paris. zero		— Hz	On	freq. offset	Hz		
fz/fo 0.125 Hz	paris. zero		Hz	On	S-D C1 C2 On C3 C4 C5	On		
Resulting Open Loop Parameters				Resulting Plots and Jitter				
K: 2.538e+011 alter: On				Pole/Zero Diagram O Transfer Function				
fp: <mark>4.583e+005 Hz</mark> alt	83e+005 Hz alter: On		Apply		C Step Response C Noise Plot			
fz: 3.750e+004 Hz alt	Iz alter: 0n				Xmin? Xmax? Ym	in? Ymax?		
• Qp: 7.050e-001 alt	er: On		rms jitter:					
PLL-Design Assistant — Written by Michael Perrott (http://www-mtl.mit.edu/~perrott)								

Resulting Step Response and Pole/Zero Diagram

M.H. Perrott

MIT OCW 23

Impact of Open Loop Parameter Variations

Dynamic Parameters	paris. pole	Hz On	Noise Parameters			
fo 300e3 Hz	paris. Q	On	ref. freq Hz			
order C1 C2 @ 3	paris. pole	Hz On	out freq.			
shape 💿 Butter 🔿 Bessel	paris. Q	On	Detector			
C Cheby1 C Cheby2 C Elliptical	paris. pole	Hz On				
ripple dB	paris. pole	Hz On	dBc/Hz Un			
type C1 © 2	paris. zero	Hz On	Hz			
fz/fo 0.125 Hz	paris. zero	Hz On	C3 C 4 C 5			
Resulting Open Loop Parameters Resulting Plots and Jitter						
K: 2.538e+011	er: -0.2:0.2:0.2 On		C Pole/Zero Diagram C Transfer Function			
fp: 4.583e+005	er: -0.2:0.2:0.2 On	Apply	Step Response Noise Plot			
fz: 3.750e+004 Hz alt	ier: On G		Xmin? Xmax? Ymin? Ymax?			
Qp: 7.050e-001	er: On	rms	jitter:			

Open loop parameter variations can be directly entered into tool

Resulting Step Responses and Pole/Zero Diagrams

Impact of variations on the loop dynamics can be visualized instantly and taken into account at early stage of design

M.H. Perrott

MIT OCW 25

Design with Parasitic Pole

Include a parasitic pole at nominal value $f_{p_1} = 1.2$ MHz

$$H(s) = \frac{K_{LF} \left(1 + \frac{s}{w_z}\right)}{s \left(1 + \frac{s}{w_p Q_p} + \left(\frac{s}{w_p}\right)^2\right) \left(1 + \frac{s}{w_{p1}}\right)}$$

Dynamic Parameters	petris.pole 1.2e6 Hz Qn		Noise Parameters			
fo 300e3 Hz order O1 O2 O3 shape OButter OBessel OCheby1 OCheby2 OElliptical ripple dB type O1 O2 fz/fo 1/8 Hz	paris. Q paris. pole paris. Q paris. pole paris. pole paris. zero paris. zero	Hz On Hz On Hz On Hz On Hz On Hz On Hz On	ref. freq Value? out freq. Value? Detector VCO freq. offset S-D 0 1 0 2 0 3 0 4 0 5	Hz Hz dBc/Hz On dBc/Hz On Hz On		
Resulting Open Loop Par	Resulting Plots and Jitter					
K: 2.294e+011 alt	er: 0n er: 0n er: 0n	Apply	Pole/Zero Diagram O T Step Response N Xmin? Xmax? Ymin?	ransfer Function oise Plot Ymax?		
Qp: 7.931e-001	er: On	rms j	jitter:			
PLL Design Assistant — Written by Michael Perrott (http://www-mtl.mit.edu/~perrott)						
$rightarrow K$, f_p and Q_p are adjusted to obtain the same dominant pole locations						

Noise Estimation

Phase noise plots can be easily obtained
 Jitter calculated by integrating over frequency range

		a for the second s						
Dynamic Parameters	paris. pole		Hz	On		Noise Pa	arameters	•••••
fo 300e3 Hz	paris. Q		_	On	ref. freq	20e6	Hz	
order C1 C2 © 3 shape © Butter C Boscol	paris 0		Hz		out freq.	1.84e9	Hz	
C Cheby1 C Cheby2 C Elliptical	paris. pole		— Hz	On	Detector	-75.9	dBc/Hz	On
ripple dB	paris. pole		Hz	On	VCO	-139.3	dBc/Hz	On
type C1 © 2	paris. zero		Hz	On	S-D C 1	1 O 2 []]	Hz	On .
fz/fo 0.125 Hz	paris. zero		Hz	On	• 3 0	04 0 5 ^[011]		
Resulting Open Loop Parameters Resulting Plots and Jitter						***		
K: 2.538e+011 al	er:	On			C Pole//	Zero Diagram	C Transfer Fund	tion
fp: <mark>4.583e+005 Hz al</mark> t	er:	On	Apply	<u>×</u>	1o4	-tesponse		_
fz: 3.750e+004 Hz alt	er:	On					-00	_
Qp: 7.050e-001 al	er:	On		rms j	itter: 13.791	ps	a set to be	

Calculated Versus Simulated Phase Noise Spectrum

Without parasitic pole:

Calculated Versus Simulated Phase Noise Spectrum

With parasitic pole at 1.2 MHz:

Noise under Open Loop Parameter Variations

Impact of open loop parameter variations on phase noise and jitter can be visualized immediately

M.H. Perrott

MIT OCW 30

Conclusion

- New closed loop design approach facilitates:
 - Accurate control of closed loop dynamics
 - Bandwidth, Order, Shape, Type
 - Straightforward design of higher order PLL's
 - Direct assessment of impact of parasitic poles/zeros
- Techniques implemented in a GUI-based CAD tool

- Beginners can quickly come up to speed in designing PLL's
- Experienced designers can quickly evaluate the performance of different PLL configurations

Bandwidth Extension of Fractional-N Frequency Synthesizers

MIT OCW

Impact of *S*-A Quantization Noise on Synth. Output

Lowpass action of PLL dynamics suppresses the shaped Σ-Δ quantization noise

Impact of Increasing the PLL Bandwidth

Higher PLL bandwidth leads to less quantization noise suppression

Tradeoff: Noise performance vs PLL bandwidth

Recent Approaches to Bandwidth Extension

- [1] C. Park, O. Kim, and B. Kim, "A 1.8GHz Self-Calibrated Phase-Locked Loop with Precise I/Q Matching," IEEE JSSC, May 2001.
- [2] K. Lee, et. al., "A Single Chip 2.4GHz Direct-Conversion CMOS Receiver for Wireless Local Loop Using Multiphase Reduced Frequency Conversion Technique," IEEE JSSC, May 2001.
- [3] S. Pamarti, L. Jansson, and I. Galton, "A Wideband 2.4GHz Delta-Sigma Fractional-N PLL With 1Mb/s In-Loop Modulation", IEEE JSSC, Jan 2004
- [4] E. Temporiti, et. al., "A 700kHz Bandwidth Σ–Δ Fractional-N Frequency Synthesizer with Spurs Compensation and Linearization Techniques for WCDMA Applications", IEEE JSSC, Sept 2004

We will focus on our own approach in this talk

Examine Classical Fractional-N Signals

Goal: eliminate the fractional spurs
Method 1: Vertical Compensation

"Fill in" pulses so that they are constant area

Fractional spurs are eliminated!

M.H. Perrott

Method 2: Horizontal Compensation

Use constant width pulses of varying height to achieve constant area pulses

Largely eliminates fractional spurs

Implementation of Horizontal Cancellation

We begin with the basic fractional-N structure

M.H. Perrott

Add a Second PFD with Delayed Divider Signal

M.H. Perrott

Scale Error Pulses According to Accumulator Residue

A Closer Look at Adding the Scaled Error Pulses

Goal – keep area constant for each pulse

It's easier to see this from a slightly different viewpoint

M.H. Perrott

Alternate Viewpoint

The sum of scaled pulses can now be viewed as horizontal cancellation

M.H. Perrott

Implementation of Pulse Scaling Operation

Direct output of a differential current DAC into two charge pumps

Issue: practical non-idealities kill performance

M.H. Perrott

Primary Non-idealities of Concern

Proposed approach: dramatically reduce impact of these non-idealities using mixed-signal processing techniques

Eliminate Impact of DAC Current Element Mismatch

Apply standard DAC noise shaping techniques to shape mismatch noise to high frequencies

See Baird and Fiez, TCAS II, Dec 1995

46

Eliminate Impact of Timing Mismatch

- Swap paths between divider outputs in a pseudorandom fashion
 - Need to also swap $\varepsilon[k]$ and 1- $\varepsilon[k]$ sequence

Improve Horizontal Cancellation Performance

Sampling circuit accumulates error pulses before passing their information to the loop filter

A common analog trick used for decades

For More Details on This Approach

Theory and simulations presented in TCAS II paper
 Meninger and Perrott, TCASII, Nov 2003

Design and Simulation of 'PFD/DAC' Synthesizer

- Step 1: Derive analytical model
- Step 2: Design at system level
- Step 3: Simulate at system level (CppSim)
- Step 4: Simulate at transistor level (SPICE)

Iterate between all of these steps in practice

Analytical Model of 'PFD/DAC' Fractional-N PLL

⁵¹

Parameterized PLL Model

M.H. Perrott

Application: A 1 MHz Bandwidth Fractional-N Frequency Synthesizer Implementation

Design Goals

- Output frequency: 3.6 GHz
 - Allows dual-band output (1.8 GHz and 900 MHz)
- Reference frequency: 50 MHz
 - Allows low cost crystal reference
- Bandwidth: 1 MHz
 - Allows fast settling time and ~1 Mbit/s modulation rate
- Noise: < -150 dBc/Hz at 20 MHz offset (3.6 GHz carrier)</p>
 - Phase noise at the 20 MHz frequency offset is very challenging for GSM and DCS transmitters
 - GSM: -162 dBc/Hz at 20 MHz offset (900 MHz carrier)
 - DCS: -151 dBc/Hz at 20 MHz offset (1.8 GHz carrier)

Simultaneous achievement of the above bandwidth and noise targets is very challenging

Evaluate Noise Performance with 1 MHz PLL BW

G(f) parameters

- **1** MHz BW, Type II, 2nd order rolloff, extra pole at 2.5 MHz
- Required PLL noise parameters (with a few dB of margin)
 - Output-referred charge pump noise: -105 dBc/Hz
 - VCO noise: -155 dBc/Hz at 20 MHz offset (3.6 GHz carrier)

Dynamic Parameters	paris. pole 2.5e6	Hz	On	Noise Parameters
fo 1e6 Hz order C1 © 2 C 3 shape © Butter © Bessel © Cheby1 © Cheby2 © Elliptical ripple dB	paris. Q paris. pole paris. Q paris. pole paris. pole	Hz Hz Hz	On On On On	ref. freq 50e6 Hz out freq. 3.6e9 Hz Detector -105 dBc/Hz On VCO -155 dBc/Hz On
type C 1 C 2 fz/fo 1/9 Resulting Open Loop Par	paris. zero paris. zero ameters	Hz Hz	On On	S-D C 1 C 2 On On On C 3 C 4 C 5
K: 2.885e+012 altr fp: 2.807e+006 Hz altr fz: 1.111e+005 Hz altr Qp: altr altr	er: On On On er: On On On er: On	Appl	y rms j	C Pole/Zero Diagram C Transfer Function Step Response • Noise Plot 10e3 100e6 -170 -60 jitter: 2.197 ps

Calculated Phase Noise for Classical Fractional-N

Calculated Phase Noise for 7-bit PFD/DAC Synth

Simulation of PFD/DAC Synthesizer using CppSim

Phase noise plots to follow: 40e6 time steps in 10 min

Intrinsic PLL Noise Performance

- Set fractional portion of divide value to zero
 - Leads to residue variation of zero
 - No quantization noise!
- Need to calculate and simulate impact of detector and VCO noise

In essence, operate as integer-N synthesizer

Calculate Intrinsic PLL Noise Sources

- Estimate detector noise (dominated by charge pump)
 - From SPICE Simulation, S_{lcp}(f) = Duty*3e-22 A²/Hz
 - Output-referred PLL noise due to above noise:

$$S_{\Phi_{out}}(f) = \left(\frac{1}{I_{cp}}\right)^2 \left(\frac{2\pi}{\alpha}N_{nom}\right)^2 |G(f)|^2 S_{Icp}(f)$$
$$= \left(\frac{1}{5 \cdot 10^{-3}}\right)^2 \left(\frac{2\pi}{1}71.3\right)^2 |G(f)|^2 0.2 \cdot 3 \cdot 10^{-22}$$

 $\implies 10 \log(S_{\Phi_{out}}(f)) = -123 |G(f)|^2 dBc/Hz$

Estimate VCO noise

- For off-chip VCO, examine data sheet:
 - In this case, $S_{\Phi vco}$ = -155 dBc/Hz at 20 MHz offset
- For on-chip VCO, use Spectre RF or other CAD tool

Calculate PLL Noise Due to Intrinsic Noise Sources

Simulated Phase Noise due to Intrinsic Noise Sources

62

2nd Order Σ - Δ **Fractional-N Performance**

Replace accumulator with second order $\Sigma - \Delta$ **modulator**

Set residue into PFD/DAC equal to zero

Calculate PLL Noise for 2^{nd} Order $\Sigma - \Delta$ Synthesizer

Simulated Phase Noise of 2nd Order *Σ*–*Δ* Synthesizer

7-bit PFD/DAC Synthesizer Performance

Impact on PLL Noise due to Non-idealities of PFD/DAC

- Impact of DAC mismatch
 - Lowers achievable quantization noise suppression
 - Negligible in this case
- Impact of delay mismatch
 - Model as white reference noise uniformly distributed from 0 to Δt

• Calculation for
$$\Delta t = 5 \text{ ps:}$$

 $S_{\Phi_{out}}(f) = \frac{1}{T} |TN_{nom}G(f)|^2 S_{\Phi_{jit}}(e^{j2\pi fT})$
 $= \frac{1}{T} |TN_{nom}G(f)|^2 \left|\frac{2\pi}{T}\right|^2 \frac{(\Delta t)^2}{12}$
 $= (50 \text{ MHz})(71.3)^2 (2\pi)^2 \frac{(5ps)^2}{12}$
 $\Longrightarrow 10 \log(S_{\Phi_{out}}(f)) = -107 |G(f)|^2 \text{ dBc/Hz}$

Calculate PLL Noise for 7-bit PFD/DAC Synthesizer

M.H. Perrott

Simulated PLL Phase Noise of 7-bit PFD/DAC

CppSim Simulated Phase Noise for Cell: wb_synth, Lib: WBSynth_Example, Sim: test.par

Summary of Design/Simulation Results

- The PLL Design Assistant can be used to model the impact of
 - Intrinsic PLL noise sources
 - **Q**uantization noise due to $\Sigma \Delta$ dithering of divide value
 - Suppression of quantization noise by n-bit PFD/DAC
 - Impact of delay and current mismatch on PLL phase noise
- CppSim simulations confirm the accuracy of the above analysis

How do PLL Design Assistant calculations compare to measured results?

A 1 MHz BW Fractional-N Frequency Synthesizer IC

- Implements proposed 7-bit PFD/DAC structure
 - 0.18u CMOS
 - Circuit details to be published in the future

Funded by MARCO C2S2

Op-amp and Sample Network

Fabricated by National Semiconductor

Measured vs Calculated Phase Noise (Integer-N)

Calculated noise is way off!

Issue: we did not consider reference jitter and 1/f noise M.H. Perrott
Adjustment of Calculations to Fit Measured Result

Calculated noise now assumes:

Detector noise is -107 dBc/Hz with 1/f corner of 130 kHz M.H. Perrott

$$S_{\Phi_{out}|REF}(f) = \overline{\Delta t_{jitt}^2} \cdot \frac{1}{T} \cdot \left(\frac{2\pi}{T}\right)^2 \cdot (N_{nom}T)^2 \cdot |G(f)|^2 \cdot \underbrace{i_{up}}_{i_{down}}$$

Accounts for PFD structure with reduced i_{up}

Assuming G(f) = 1:

$$S_{\Phi_{out}|REF}(f) = 10^{(-107/10)}$$

$$\Rightarrow \overline{\Delta t_{jitt}^2} = S_{\Phi_{out}|REF} \cdot \frac{T}{(2\pi N_{nom})^2} \cdot \frac{i_{down}}{i_{up}}$$

■ Assuming N_{nom} = 73, T = 1/50MHz, i_{up}/i_{down} = 1/5 $\Rightarrow \Delta t_{jitt}$ = 3.08ps

M.H. Perrott

7-bit PFD/DAC Synthesizer Vs Integer-N Configuration

Phase Swapping Enabled

Phase Swapping Disabled

- Left: Phase swapping enabled
 - Timing mismatch converted into broadband noise
- Right: Phase swapping disabled

More fractional spurs, lower broadband noise

M.H. Perrott

Adjustment of Calculations to fit Measured Results

Calculated noise now assumes:

Detector noise is -100 dBc/Hz with 1/f corner of 20 kHz

M.H. Perrott

Back Extraction of Timing Mismatch Using the Model

$$S_{\Phi_{out}|\Delta_t} = \frac{1}{T} \frac{\overline{\Delta_{t2}^2}}{12} (2\pi N_{nom})^2 \cdot |G(f)|^2$$

Assuming G(f) = 1:

$$S_{\Phi_{out}|\Delta_t} = 10^{(-100/10)}$$

$$\Rightarrow \overline{\Delta_{t2}^2} = S_{\Phi_{out}|\Delta_t} \cdot \frac{12T}{(2\pi N_{nom})^2}$$

■ Assuming $N_{nom} = 73$, T = 1/50MHz $\Rightarrow \Delta_{t2} = 10.7$ ps

M.H. Perrott

Measured Noise Suppression

- Comparison of 7-bit PFD/DAC synthesizer with 2nd order ΣΔ Synthesizer
- Low freq noise ~2dB worse because of phase swapping
- 29dB quantization noise suppression measured at 10MHz !

M.H. Perrott

Measured Noise Suppression: No Swapping

- Demonstrates that timing mismatch is degrading our maximum suppression by 2 dB (when swapping)
- Spurs occur due to gain error from timing mismatch

M.H. Perrott

Summary of Calculation/Measured Results Comparison

- Comparison of PLL Design Assistant results to measured data allow back extraction of key parameters:
 - Intrinsic noise
 - Detector and VCO noise
 - PFD/DAC nonidealities
 - Delay mismatch value

Future work: better low frequency noise accuracy

Conclusions

- Fractional-N frequency synthesizers are about to undergo dramatic improvement in achieving high PLL bandwidth with excellent noise performance
 - The PFD/DAC approach presented here is only one of many possibilities to achieve this goal
- Design and simulation methodologies are starting to emerge
 - Analytical modeling of noise can be quite accurate
 - The PLL Design Assistant can be useful in this area
 - Behavioral simulation can be used to verify analytical models
 - CppSim offers a convenient and fast framework for this

Research into High Bandwidth PLL Architectures is at an Exciting Crossroads