MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776
High Speed Communication Circuits Lecture 3
Wave Guides and Transmission Lines

Massachusetts Institute of Technology February 8, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

Maxwell's Equations

- General form:

$$
\begin{gather*}
\nabla \times E=-\mu \frac{d H}{d t} \tag{1}\\
\nabla \times H=J+\epsilon \frac{d E}{d t} \tag{2}\\
\nabla \cdot \epsilon E=\rho \tag{3}\\
\nabla \cdot \mu H=0 \tag{4}
\end{gather*}
$$

- Assumptions for free space and transmission line propagation
- No charge buildup: $\rho=0$
- No free current: $J=0$

Maxwell's Equations in Free Space

Take Curl of (1):

$$
\begin{equation*}
\nabla \times \nabla \times E=-\nabla \times\left(\mu \frac{\partial H}{\partial t}\right)=-\mu \frac{\partial}{\partial t}(\nabla \times H) \tag{5}
\end{equation*}
$$

From (2)
$\mu \frac{\partial}{\partial t}(\nabla \times H)=\mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}}$

Vector identity + (3)

$$
\begin{equation*}
\nabla \times \nabla \times E=\nabla(\nabla \cdot E)-\nabla^{2} E=-\nabla^{2} E \tag{7}
\end{equation*}
$$

Simplified Maxwell's Equations

Putting together (5), (6) and (7):

$$
\begin{equation*}
\nabla^{2} E+\mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=0 \tag{8}
\end{equation*}
$$

Similarly for H

$$
\begin{equation*}
\nabla^{2} H+\mu \varepsilon \frac{\partial^{2} H}{\partial t^{2}}=0 \tag{9}
\end{equation*}
$$

For simplicity, assume only z-direction

$$
\begin{equation*}
\nabla^{2} E=\frac{\partial^{2} E}{\partial z^{2}} \quad \text { and } \quad \nabla^{2} H=\frac{\partial^{2} H}{\partial z^{2}} \tag{10}
\end{equation*}
$$

Solutions to Maxwell's Equations

(10) reduces to

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial z^{2}}+\mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=0 \tag{11}
\end{equation*}
$$

Similarly for H

$$
\begin{equation*}
\frac{\partial^{2} H}{\partial z^{2}}+\mu \varepsilon \frac{\partial^{2} H}{\partial t^{2}}=0 \tag{12}
\end{equation*}
$$

(11) and (12) can be satisfied by any function in the form $f(z \pm v t)$ where $v=\frac{1}{\sqrt{\mu \varepsilon}}$

Calculating Propagation Speed

- The function f is a function of time AND position
- Velocity calculation

$$
\begin{aligned}
& z \pm v t=\text { constant } \\
& \frac{\partial z}{\partial \mathrm{t}}= \pm v
\end{aligned}
$$

- The solution propagates in the z or $-z$ direction with a
velocity of $\quad v=\frac{1}{\sqrt{\mu \varepsilon}}$

Assume Sinusoidal Steady-State

E and H solutions are in the form

$$
A e^{j \omega\left(t \pm \frac{z}{v}\right)}=A e^{j(\omega t \pm k z)}
$$

Where

$$
k=\frac{\omega}{v}=\omega \sqrt{\mu \varepsilon}
$$

Assumptions

- Orientation and direction
- E field is in x-direction and traveling in z-direction
- H field is in y-direction and traveling in z-direction
- In freespace:

- For transmission line (TEM mode)

Solutions

- Fields change only in time and in z-direction

$$
\begin{aligned}
& E=\widehat{x} E_{x}(z, t)=\widehat{x} E_{o} e^{-j k z} e^{j w t} \\
& H=\widehat{y} H_{y}(z, t)=\widehat{y} H_{o} e^{-j k z} e^{j w t}
\end{aligned}
$$

- Implications:

$$
\begin{aligned}
& \frac{d E_{x}(z, t)}{d z}=-j k E_{x}(z, t), \quad \frac{d E_{x}(z, t)}{d t}=j w E_{x}(z, t) \\
& \frac{d H_{y}(z, t)}{d z}=-j k H_{y}(z, t), \quad \frac{d H_{y}(z, t)}{d t}=j w H_{y}(z, t)
\end{aligned}
$$

Evaluate Curl Operations in Maxwell's Formula

- Definition

$$
\begin{aligned}
& \nabla \times E=\hat{x}\left(\frac{d E_{z}}{d y}-\frac{d E_{y}}{d z}\right)+\hat{y}\left(\frac{d E_{x}}{d z}-\frac{d E_{z}}{d x}\right)+\hat{z}\left(\frac{d E_{y}}{d x}-\frac{d E_{x}}{d y}\right) \\
& \nabla \times H=\hat{x}\left(\frac{d H_{z}}{d y}-\frac{d H_{y}}{d z}\right)+\hat{y}\left(\frac{d H_{x}}{d z}-\frac{d H_{z}}{d x}\right)+\hat{z}\left(\frac{d H_{y}}{d x}-\frac{d H_{x}}{d y}\right)
\end{aligned}
$$

Evaluate Curl Operations in Maxwell's Formula

- Definition

$$
\begin{aligned}
& \nabla \times E=\hat{x}\left(\frac{d E_{z}}{d y}-\frac{d E_{y}}{d z}\right)+\hat{y}\left(\frac{d E_{x}}{d z}-\frac{d E_{z}}{d x}\right)+\hat{z}\left(\frac{d E_{y}}{d x}-\frac{d E_{x}}{d y}\right) \\
& \nabla \times H=\hat{x}\left(\frac{d H_{z}}{d y}-\frac{d H_{y}}{d z}\right)+\hat{y}\left(\frac{d H_{x}}{d z}-\frac{d H_{z}}{d x}\right)+\hat{z}\left(\frac{d H_{y}}{d x}-\frac{d H_{x}}{d y}\right)
\end{aligned}
$$

- Given the previous assumptions

$$
\begin{aligned}
& \nabla \times E=\widehat{y} \frac{d E_{x}(z, t)}{d z}=-\widehat{y} j k E_{x}(z, t) \\
& \nabla \times H=-\widehat{x} \frac{d H_{y}(z, t)}{d z}=\widehat{x} j k H_{y}(z, t)
\end{aligned}
$$

Now Put All the Pieces Together

- Solve Maxwell's Equation (1)

$$
\begin{aligned}
\nabla \times E=-\mu \frac{d H}{d t} & \Rightarrow-\widehat{y} j k E_{x}(z, t)=-\widehat{y} \mu j w H_{y}(z, t) \\
& \Rightarrow \frac{E_{x}(z, t)}{H_{y}(z, t)}=\frac{\mu w}{k} \quad \text { (intrinsic impedance) }
\end{aligned}
$$

Now Put All the Pieces Together

- Solve Maxwell's Equations (1) and (2)

$$
\begin{aligned}
\nabla \times E=-\mu \frac{d H}{d t} & \Rightarrow-\widehat{y} j k E_{x}(z, t)=-\hat{y} \mu j w H_{y}(z, t) \\
& \Rightarrow \frac{E_{x}(z, t)}{H_{y}(z, t)}=\frac{\mu w}{k} \quad \text { (intrinsic impedance) }
\end{aligned}
$$

\Rightarrow intrinsic impedance $=\frac{\mu w}{k}=\frac{\mu w}{w \sqrt{\mu \epsilon}}=\sqrt{\frac{\mu}{\epsilon}}$

Freespace Values

- Constants

$$
\begin{aligned}
& \epsilon=\epsilon_{o}=\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} / \mathrm{m} \\
& \mu=\mu_{o}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
\end{aligned}
$$

- Impedance

$$
\sqrt{\frac{\mu}{\epsilon}}=\sqrt{\frac{\mu_{o}}{\epsilon_{o}}}=377 \mathrm{Ohms}
$$

- Propagation speed

$$
\frac{1}{\sqrt{\mu \epsilon}}=\frac{1}{\sqrt{\mu_{o} \epsilon_{o}}}=30 \times 10^{9} \mathrm{~cm} / \mathrm{s}
$$

- Wavelength of 30 GHz signal

$$
\lambda=\frac{T}{\sqrt{\mu \epsilon}}=\frac{1}{f \sqrt{\mu_{o} \epsilon_{o}}}=1 \mathrm{~cm}
$$

Voltage and Current

- Definitions: $V=\int_{C_{t}} E \cdot d l$ (path integral)

$$
I=\oint_{C_{o}} H \cdot d l \quad \text { (contour integral) }
$$

Parallel Plate Waveguide

- E-field and H-field are influenced by plates

Current and H-Field

- Assume that (AC) current is flowing

Current and H-Field

- Current flowing down waveguide influences H-field

Current and H-Field

- Flux from one plate interacts with flux from the other plate

Current and H-Field

- Approximate H-Field to be uniform and restricted to lie between the plates

$I=b H$

Voltage and E-Field

- Approximate E-field to be uniform and restricted to lie between the plates

$$
V=a E
$$

Back to Maxwell's Equations

- From previous analysis

$$
\begin{gathered}
\nabla \times E=-\mu \frac{d H}{d t} \Rightarrow j k E_{x}(z, t)=j w \mu H_{y}(z, t) \\
\nabla \times H=\epsilon \frac{d E}{d t} \Rightarrow j k H_{y}(z, t)=j w \epsilon E_{x}(z, t)
\end{gathered}
$$

- These can be equivalently written as

$$
\begin{gathered}
j k\left(a E_{x}(z, t)\right)=j w \mu \frac{a}{b}\left(b H_{y}(z, t)\right) \Rightarrow j k V(z, t)=j w L I(z, t) \\
j k\left(b H_{y}(z, t)\right)=j w \epsilon \frac{b}{a}\left(a E_{x}(z, t)\right) \Rightarrow j k I(z, t)=j w C V(z, t) \\
\text { Where } \begin{array}{l}
L=\mu \frac{a}{b} \\
\left.C=\epsilon \frac{b}{a} \text { (inductance per unit length }-\mathrm{H} / \mathrm{m}\right) \\
\text { (capacitance per unit length }-\mathrm{F} / \mathrm{m})
\end{array}
\end{gathered}
$$

Wave Equation for Transmission Line (TEM)

- Key formulas

$$
\begin{align*}
& j k V(z, t)=j w L I(z, t) \tag{1}\\
& j k I(z, t)=j w C V(z, t) \tag{2}
\end{align*}
$$

- Substitute (2) into (1)

$$
\begin{gathered}
j k V(z, t)=j w L\left(\frac{w}{k} C V(z, t)\right) \Rightarrow\left(k^{2}-w^{2} L C\right) V(z, t)=0 \\
\Rightarrow k=w \sqrt{L C}
\end{gathered}
$$

- Characteristic impedance (use Equation (1))

$$
\frac{V(z, t)}{I(z, t)}=\frac{w L}{k}=\frac{w L}{w \sqrt{L C}}=\sqrt{\frac{L}{C}}
$$

Connecting to the Real World

- Typical of sinusoidal analysis usingphasors, the solutions are complex

$$
V(z, t)=V_{o} e^{-j k z} e^{j w t}=V_{o} e^{-j(w t-k z)}
$$

- Take the real part of the solution to find the real-world solution:

$$
v(z, t)=\operatorname{Re}(V(z, t))=V_{o} \cos (w t-k z)
$$

Calculating Propagation Speed

- The resulting cosine wave is a function of time AND position

" Consider "riding" one part of the wave

$$
-k z+w t=\text { constant }
$$

- Velocity calculation

$$
\frac{d z}{d t}=\frac{d}{d t}\left(\frac{w t}{k}\right)=\frac{w}{k}=\frac{w}{w \sqrt{L C}}=\frac{1}{\sqrt{L C}}
$$

Integrated Circuit Values

- Constants

$$
\epsilon=\epsilon_{r} \epsilon_{o} \quad\left(\epsilon_{r}=3.9,11.7,4.4 \text { in } \mathrm{SiO}_{2}, \text { Si, FR4, respectively }\right)
$$

$\mu=\mu_{r} \mu_{o} \quad\left(\mu_{r}=1\right.$ for the above materials)

- Impedance (geometry/material dependant)

$$
\sqrt{\frac{L}{C}}=\sqrt{\frac{\mu(a / b)}{\epsilon(b / a)}}=\sqrt{\frac{\mu}{\epsilon}}\left(\frac{a}{b}\right)
$$

Integrated Circuit Values

- Constants
$\epsilon=\epsilon_{r} \epsilon_{o} \quad\left(\epsilon_{r}=3.9,11.7,4.4\right.$ in $\mathrm{SiO}_{2}, S i$, FR4, respectively)
$\mu=\mu_{r} \mu_{o} \quad\left(\mu_{r}=1\right.$ for the above materials)
- Impedance (geometry/material dependant)

$$
\sqrt{\frac{L}{C}}=\sqrt{\frac{\mu(a / b)}{\epsilon(b / a)}}=\sqrt{\frac{\mu}{\epsilon}}\left(\frac{a}{b}\right)
$$

- Propagation speed (geometry independent, material dependent)

$$
\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu(a / b) \epsilon(b / a)}}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{30 \times 10^{9}}{\sqrt{\mu_{r} \epsilon_{r}}} \mathrm{~cm} / \mathrm{s}
$$

- Wavelength of 30 GHz signal in silicon dioxide

$$
\lambda=\frac{T}{\sqrt{\mu \epsilon}}=\frac{1}{f \sqrt{3.9 \mu_{o} \epsilon_{o}}}=1 / 2 \mathrm{~cm}
$$

LC Network Analogy of Transmission Line (TEM)

- LC network analogy

- Calculate input impedance

$$
\begin{aligned}
Z_{i n}= & s L+(1 / s C) \| Z_{i n}=s L+\frac{Z_{i n}}{1+Z_{i n} s C} \\
& \Rightarrow Z_{i n}^{2}-s L Z_{i n}-L / C=0 \\
& \Rightarrow Z_{i n}=\frac{s L}{2}\left(1 \pm \sqrt{1+\frac{4}{s^{2} L C}}\right)
\end{aligned}
$$

LC Network Analogy of Transmission Line (TEM)

- LC network analogy

- Calculate input impedance

$$
\begin{aligned}
Z_{i n}= & s L+(1 / s C) \| Z_{i n}=s L+\frac{Z_{i n}}{1+Z_{i n} s C} \\
& \Rightarrow Z_{i n}^{2}-s L Z_{i n}-L / C=0 \\
& \Rightarrow Z_{i n}=\frac{s L}{2}\left(1 \pm \sqrt{1+\frac{4}{s^{2} L C}}\right) \\
\text { for }|s| & \ll \frac{1}{\sqrt{L C}} \Rightarrow Z_{i n} \approx \frac{s L}{2}\left(1 \pm \frac{2}{s \sqrt{L C}}\right) \approx \sqrt{\frac{L}{C}}
\end{aligned}
$$

How are Lumped LC and Transmission Lines Different?

- In transmission line, L and C values are infinitely small
- It is always true that $|s| \ll \frac{1}{\sqrt{L C}}$

- For lumped LC, L and C have finite values
- Finite frequency range for $|s| \ll \frac{1}{\sqrt{L C}}$
$Z_{i n}=\frac{s L}{2}\left(1 \pm \sqrt{1+\frac{4}{s^{2} L C}}\right) \Rightarrow$ want $|s|<\frac{2}{\sqrt{L C}}$ for real $Z_{\text {in }}$

Lossy Transmission Lines

- Practical transmission lines have losses in their conductor and dielectric material
- We model such loss by including resistors in the LC model

- The presence of such losses has two effects on signals traveling through the line
- Attenuation
- Dispersion (i.e., bandwidth degradation)
- See textbook for analysis

