MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.776

High Speed Communication Circuits and Systems Lecture 9 Enhancement Techniques for Broadband Amplifiers, Narrowband Amplifiers

> Massachusetts Institute of Technology March 3, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

Shunt-Series Peaking

- Series inductors isolate load capacitance from M₁: delays charging of load capacitance
- Trades delay for bandwidth
- L₁, L₂, L₃ can be implemented by 2 coupled inductors with coupling coefficient of k

T-Coil Bandwidth Enhancement

- Uses coupled inductors to realize T inductor network
 - Works best if capacitance at drain of M₁ is much less than the capacitance being driven at the output load
- C_B provides parallel resonance to improve bandwidth further See Chap. 9 (Ch. 8, 1st ed.) of Tom Lee's book pp 279-282 (187-191)

T-Coil Continued

The self inductance L (with the other winding opencircuited) must be

$$L = \frac{R_L^2 C_L}{2(1+k)}$$

The bridging capacitance

$$C_B = \frac{C_L(1-k)}{4(1+k)}$$

Coupling coefficient
 k=1/3 for Butterworth response
 k=1/2 for maximally flat delay (linear phase)

Bandwidth extension: approximately 2.8 (Butterworth)

 See S. Galal, B. Ravazi, "10 Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18u CMOS", ISSCC 2003, pp 188-189 and "Broadband ESD Protection ...", pp. 182-183

- Also see "Circuit Techniques for a 40 Gb/s Transmitter in 0.13um CMOS", J. Kim, et. al. ISSCC 2005, Paper 8.1

H.-S. Lee & M.H. Perrott

Bandwidth Enhancement With *f_t* **Doublers**

A MOS transistor has f_t calculated as

$$2\pi f_t = \frac{g_m}{C_{gs} + C_{gd}} \approx \frac{g_m}{C_{gs}}$$

- f_t doubler amplifiers attempt to increase the ratio of transconductance to capacitance
- We can make the argument that differential amplifiers are f_t doublers
 - Capacitance seen by V_{in} for single-ended input: $C_{qs}/2$
 - Difference in current:

$$i_2 - i_1 = \frac{v_{in}}{2}g_m - \left(-\frac{v_{in}}{2}\right)g_m = v_{in}g_m$$

Transconductance to Cap ratio is doubled: ²/₂

H.-S. Lee & M.H. Perrott

Creating a Single-Ended Output

Input voltage is again dropped across two transistors

- Ratio given by voltage divider in capacitance
 - Ideally is $\frac{1}{2}$ of input voltage on C_{qs} of each device
- Input voltage source sees the series combination of the capacitances of each device
 - **Ideally sees** $\frac{1}{2}$ of the C_{gs} of M₁
- Currents of each device add to ideally yield ratio: $\frac{2g_m}{C}$

H.-S. Lee & M.H. Perrott

Creating the Bias for M₂

Use current mirror for bias (Battjes f, doubler)

- Inspired by bipolar circuits (see Tom Lee's book, pp288-290 (197-199))
- Need to set V_{bias} such that current through M₁ has the desired current of I_{bias}
 - The current through M₂ will ideally match that of M₁

Problems of *f_t* **Doubler in Modern CMOS RF Circuits**

- Problems:
 - Works if Cgs dominates capacitance , but in modern CMOS, this is not the case (for example, C_{gd}=0.45C_{gs} in 0.18 μ CMOS)
 - achievable bias voltage across M₁ (and M₂) is severely reducedby 2x!) (thereby reducing effective f_t of device)
 - Input capacitance degrades due to C_{gs}, C_{db} of M₃: at most
 1.5x improvement in transconductance/capacitance ratio

Assuming zero Cdb:

$$C_{in} = C_{gs} || 2C_{gs} = \frac{1}{1.5} C_{gs}$$

H.-S. Lee & M.H. Perrott

Increasing Gain-Bandwidth Product Through Cascading

 We can significantly increase the gain of an amplifier by cascading n stages

$$\Rightarrow \frac{v_{out}}{v_{in}} = \left(\frac{A}{1+s/w_o}\right)^n = A^n \frac{1}{(1+s/w_o)^n}$$

Issue – bandwidth degrades, but by how much?

H.-S. Lee & M.H. Perrott

Analytical Derivation of Overall Bandwidth

The overall 3-db bandwidth of the amplifier is where

$$\left|\frac{v_{out}}{v_{in}}\right| = \left|\frac{A}{1+jw_1/w_o}\right|^n = \frac{A^n}{\sqrt{2}}$$

- w₁ is the overall bandwidth
- A and w_o are the gain and bandwidth of each section

$$\Rightarrow \left(\frac{A}{\sqrt{1 + (w_1/w_o)^2}}\right)^n = \frac{A^n}{\sqrt{2}}$$
$$\Rightarrow \left(1 + (w_1/w_o)^2\right)^n = 2$$
$$\Rightarrow w_1 = w_o \sqrt{2^{1/n} - 1}$$

Bandwidth decreases much slower than gain increases

Overall gain bandwidth product of amp can be increased
 H.-S. Lee & M.H. Perrott

Transfer Function for Cascaded Sections

Choosing the Optimal Number of Stages

To first order, there is a constant gain-bandwidth product for each stage

$$\Rightarrow Aw_o = w_u \Rightarrow w_o = w_u/A$$

- Increasing the bandwidth of each stage requires that we lower its gain
- Can make up for lost gain by cascading more stages
- We found that the overall bandwidth is calculated as

$$w_1 = w_o \sqrt{2^{1/n} - 1} = \frac{w_u}{A} \sqrt{2^{1/n} - 1}$$

Assume that we want to achieve gain G with n stages

$$\Rightarrow A = G^{1/n} \Rightarrow w_1 = \frac{w_u}{G^{1/n}} \sqrt{2^{1/n} - 1}$$

From this, optimum gain/stage \approx sqrt(e) = 1.65

See Tom Lee's book, pp 299-302 (207-211,1st ed.) *H.-S. Lee & M.H. Perrott*

Achievable Bandwidth Versus G and n

 $2^{1/n}$ w_u Achievable Bandwidth (Normalized to $\omega_{\rm u}$) Versus Gain (G) and Number of Stages (n) 0.3 $2^{1/n}$ w_u w_1 $\overline{G^{1/n}}$ 0.25 G=10 0.2 G=100 ω₁ 0.15 G=1000 ω A=1.65 0.1 A=3 0.05 0 0 15 5 10 20 25 30 H.-S. Lee & M.H. Perrott n

- Optimum gain per stage is about 1.65
 - Note than gain per stage derived from plot as

 $A = G^{1/n}$

- Maximum is fairly soft, though
- Can dramatically lower power (and improve noise) by using larger gain per stage

Motivation for Distributed Amplifiers

- We achieve higher gain for a given load resistance by increasing the device size (i.e., increase g_m)
 - Increased capacitance lowers bandwidth
 - We therefore get a relatively constant gain-bandwidth product
- We know that transmission lines have (ideally) infinite bandwidth, but can be modeled as LC networks

Can we lump device capacitances into transmission line? H.-S. Lee & M.H. Perrott MIT OCM

Distributing the Input Capacitance

- Lump input capacitance into LC network corresponding to a transmission line
 - Signal ideally sees Z_o=R_L rather than an RC lowpass
 - Often implemented as lumped networks such as T-coils
 - We can now trade delay (rather than bandwidth) for gain
- Issue: outputs are delayed from each other

Distributing the Output Capacitance

- Delay the outputs same amount as the inputs
 - Now the signals match up
 - We have also distributed the output capacitance
- Benefit high bandwidth
- Negatives high power, poorer noise performance, expensive in terms of chip area

Each transistor gain is adding rather than multiplying! H.-S. Lee & M.H. Perrott
MIT OCI

Narrowband Amplifiers

- For wireless systems, we are interested in conditioning and amplifying the signal over a narrow frequency range centered at a high frequency
 - Allows us to apply narrowband transformers to create matching networks
- Can we take advantage of this fact when designing the amplifier?

H.-S. Lee & M.H. Perrott

Tuned Amplifiers

- Put inductor in parallel across R_L to create bandpass filter
 - It will turn out that the gain-bandwidth product is roughly conserved regardless of the center frequency
- To see this and other design issues, we must look closer at the parallel resonant circuit

Tuned Amp Transfer Function About Resonance

Evaluate at $s = j\omega$

Amplifier transfer function

$$\frac{v_{out}}{v_{in}} = g_m Z_{tank}(s) = \frac{g_m}{Y_{tank}(s)}$$

Note that conductances add in parallel

1

$$Y_{tank}(s) = \frac{1}{R_p} + \frac{1}{sL_p} + sC_p$$

$$Y_{tank}(w) = \frac{1}{R_p} - \frac{j}{wL_p} + jwC_p = \frac{1}{R_p} + \frac{j}{wL_p} \left(-1 + w^2 L_p C_p \right)$$

• Look at frequencies about resonance: $w = w_o + \Delta w$

$$\Rightarrow Y_{tank}(\Delta w) = \frac{1}{R_p} + \frac{j}{(w_o + \Delta w)L_p} \left(-1 + (w_o + \Delta w)^2 L_p C_p \right)$$
$$\approx \frac{1}{R_p} + \frac{j}{w_o L_p} \left(-1 + w_o^2 L_p C_p + 2w_o \Delta w L_p C_p \right)$$

H.-S. Lee & M.H. Perrott

Tuned Amp Transfer Function About Resonance (Cont.)

From previous slide

$$Y_{tank}(\Delta w) \approx \frac{1}{R_p} + \frac{j}{w_o L_p} \left(-\frac{1 + w_o^2 L_p C_p}{=0} + 2w_o \Delta w L_p C_p \right)$$
$$\approx \frac{1}{R_p} + \frac{j}{w_o L_p} \left(2w_o \Delta w L_p C_p \right) = \frac{1}{R_p} + j \Delta w 2C_p$$

Simplifies to RC circuit for bandwidth calculation

$Z_{i-1}(\Lambda_{iv}) \sim$	$e B_{\rm ell}$	LT
$Z_{tank}(\Delta w) \sim$	p p	$j\Delta w 2C_p$

H.-S. Lee & M.H. Perrott

Comparison between Low-Pass and Band-Pass

Comparison between Low-Pass and Band-Pass

- Tuned amplifier characteristic is a frequency translated version of the low-pass amplifier
- The band-pass bandwidth is equal to the low-pass bandwidth (the band-pass shape is 2x narrower but upper and lower sidebands give the same bandwidth as LP)
- We are tuning out the effect of capacitor (parallel LC looks like an open circuit at resonance, so C doesn't load the amplifier)
- This is often called low-pass to band-pass transform in filter design:
 - Replace C with parallel LC tank
 - Replace L with series LC tank

Gain-Bandwidth Product for Tuned Amplifiers

The gain-bandwidth product:

$$G \cdot BW = g_m R_p \frac{1}{R_p C_p} = \frac{g_m}{C_p}$$

- The above expression is just like the low-pass and independent of center frequency!
 - In practice, we need to operate at a frequency less than the f_t of the device

H.-S. Lee & M.H. Perrott

The Issue of Q

- By definition $Q = w \frac{\text{energy stored}}{\text{average power dissipated}}$
- For parallel tank

H.-S. L

at resonance:
$$Q = \frac{R_p}{w_o L_p} = w_o R_p C_p$$

Comparing to above: $Q = w_o R_p C_p = \frac{w_o}{1/(R_p C_p)} = \frac{w_o}{BW}$
ee & M.H. Perrott

Design of Tuned Amplifiers

- Three key parameters
 - Gain = $g_m R_p$
 - **Center frequency** = ω_o
 - Q = ω_o/BW
- Impact of high Q
 - Benefit: allows achievement of high gain with low power
 - Problem: makes circuit sensitive to process/temp variations

H.-S. Lee & M.H. Perrott

Issue: C_{ad} Can Cause Undesired Oscillation

At frequencies below resonance, tank looks inductive

 $A_v \approx -g_m(jwL) \Rightarrow Y_{in}(w) \approx jwC_{gs} + jwC_{gd}(1 + g_m(jwL))$

$$\Rightarrow Y_{in}(w) \approx jwC_{gs} + jwC_{gd} - w^2 g_m C_{gd} L$$
Negative
Resistance!

H.-S. Lee & M.H. Perrott

Use Cascode Device to Remove Impact of C_{ad}

At frequencies above and below resonance

$$Y_{in}(w) = jwC_{gs} + jwC_{gd}(1 + g_{m1}/g_{m2})$$

H.-S. Lee & M.H. Perrott

Neutralization in Tuned Amplifier

Recall the neutralization for broadband amplifier

For narrowband amplifier, the inverting signal can be generated by a tapped transformer

H.-S. Lee & M.H. Perrott

Neutralization with Tapped Transformer

Problems: Area and quality of on chip transformer The neutralization cap C_N must be matched to C_{qd}

H.-S. Lee & M.H. Perrott

Differential Neutralization for Narrow Band Amplifier

- Same principle as differential neutralization in broadband amp
- Only issue left is matching C_N to C_{qd}
 - Often use lateral metal caps for C_N (or CMOS transistor)

H.-S. Lee & M.H. Perrott

Superregenerative Amplifier

$$v_{out}(t) = v_{in}(0)e^{\frac{t}{RC}}$$

V_{in} is sampled at the rate f_c (in actual implementation f_c may be input level dependent)

The sampled output voltage

$$v_{out}(T) = v_{in}(0)e^{\frac{T}{RC}}$$
 $T = \frac{1}{f_c}$

Can be used for both broadband and narrowband – we'll do a simple analysis for broadband amp.

H.-S. Lee & M.H. Perrott

Gain calculation

$$v_{out}(T) = v_{in}(0)e^{\frac{T}{RC}}$$

$$A_v = \frac{v_{out}}{v_{in}} = e^{\frac{T}{RC}}$$

Nyquist theorem

$$BW < \frac{f_C}{2} = \frac{1}{2T}$$

$$BW|_{max} \bullet lnA_v = \frac{1}{2RC}$$

Trades bandwidth only logarithmically with gain!

H.-S. Lee & M.H. Perrott

Superregenerative Amplifier Example (Narrowband)

 R_B : DC bias resistor L_C , C_1 : Tuning LC C_2 : positive feedback L_E : RF choke (large inductance)

•When the RF amplitude becomes large, it is rectified at the emitter of Q1
•This raises the DC potential at the emitter Q1 eventually turning it off
•The RF oscillation dies (quenched), and the DC potential at emitter of Q1 returns

•Amplitude of oscillation grows again due to positive feedback

H.-S. Lee & M.H. Perrott

Active Real Impedance Generator

Input admittance:

$$Y_{in}(w) = jwC_f(1 - A_v) = jwC_f(1 + A_o e^{-j\Phi})$$

$$= jwC_f(1 + A_o \cos \Phi) + A_o wC_f \sin \Phi$$

Resistive component!

H.-S. Lee & M.H. Perrott

This Principle Can Be Applied To Impedance Matching

We will see that it's advantageous to make Z_{in} real without using resistors

For the above circuit (ignoring C_{qd})

Use A Series Inductor to Tune Resonant Frequency

- Calculate input impedance with added inductor (in order to choose resonance freq. and input resistance separately) $Z_{in}(s) = \frac{1}{sC_{as}} + s(L_s + L_g) + \frac{g_m}{C_{qs}}L_s$
- Often want purely resistive component at frequency ω_o
 - **Choose L**_a such that resonant frequency = ω_o

i.e., want
$$\frac{1}{\sqrt{(L_s+L_g)C_{gs}}}=w_o$$

H.-S. Lee & M.H. Perrott

Narrowband Alternative to LC

- On-chip inductors take up considerable die area and have relatively poor Q. Is there any other alternatives?
 - Use quarter-wavelength transmission line (waveguide) resonator?
 - In Lecture 5 we found the $\lambda/4$ waveguide with shorted load behave much like a parallel LC circuit, while with open load it behaves like a series LC
 - The problem is the dimension. For 900MHz mobile phone frequency, $\lambda/4$ in free space is 3.25 inches!
 - With high permittivity dielectric material (ceramic), the size can be reduced to a reasonable dimensions. With ε_r =10, the length of waveguide is only about inch.
 - Different configurations of filters can be built by combining sections of series and parallel LC equivalents
 - More appropriate at frequencies over GHz

SAW (Surface Acoustic Wave) filters are another popular alternative

H.-S. Lee & M.H. Perrott

SAW Filters

SAW filters use piezoelectric substrate to generate surface acoustic wave

SAW Filters

- Piezoelectric substrate
 - LiTaO₃
 - LiNbO₃
 - Quartz
- Filter Structures
 - Longitudinal Filter
 - Transversal Filter
 - Ladder Filter
- Saw filters have high selectivity and low insertion loss (down to a fraction of % fractional bandwidth, ~2dB insertion loss
- Wide range of enter frequency (few 100 kHz-GHz)
- At 1-2 GHz, the dimensions of SAW filters are 1-2mm
- For more information on SAW filters look over www.njr.com

H.-S. Lee & M.H. Perrott

SAW Filters in Mobile Phones

Figure by MIT OCW.

H.-S. Lee & M.H. Perrott Adapted from Japan Radio Co.

SAW Filter Example

Figure by MIT OCW.

JRC NSVS754 2.4 GHz RF SAW Filter Charactersitic

Adapted from Japan Radio Co.

H.-S. Lee & M.H. Perrott