The Thermal Domain II

Joel Voldman*

Massachusetts Institute of Technology
 *(with thanks to SDS)

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
J. Voldman: 2.372J/6.777J Spring 2007, Lecture 13-1

Outline

> Review

$>$ Lumped-element modeling: self-heating of resistor
> Analyzing problems in space and 1/space

- The DC Steady State - the Poisson equation
» Finite-difference methods
» Eigenfunction methods
- Transient Response
» Finite-difference methods
» Eigenfunction methods
$>$ Thermoelectricity

The generalized heat-flow equation

$>$ Last time we generated a general conservation equation
$>$ Include a flux that depends on a "force" gradient
$>$ And a "capacity"

$$
\frac{\partial b}{\partial t}=-\nabla \cdot \mathbf{F}+G
$$

Image by MIT OpenCourseWare. relation

$$
\begin{aligned}
& J_{Q}=-\kappa \nabla T \\
& \frac{\partial \tilde{Q}}{\partial T}=\tilde{C}
\end{aligned}
$$

The generalized heat-flow equation

$>$ We get a generalized

conduction equation

- Assume homogeneous region
> Applies to
- Heat flow
- Mass transport (diffusion)
- Squeezed-film damping
$>$ Provides a rich set of solution methods

$$
\begin{aligned}
& \tilde{C} \frac{\partial T}{\partial t}-\kappa \nabla^{2} T=\left.\tilde{P}\right|_{\text {sources }} \\
& \frac{\partial T}{\partial t}-D \nabla^{2} T=\left.\frac{1}{\tilde{C}} \tilde{P}\right|_{\text {sources }}
\end{aligned}
$$

$$
\begin{array}{lll}
{\left[\mathrm{m}^{2} / \mathrm{s}\right]} & D=\frac{K}{\widetilde{C}} & {[\mathrm{~W} / \mathrm{m}-\mathrm{K}]} \\
& {\left[\mathrm{K}-\mathrm{m}^{3}\right]} \\
\hline
\end{array}
$$

Thermal diffusivity

Thermal domain lumped elements

> Thermal resistor

- Resistance to heat flow
- Three types
» Conduction
» Convection
» Radiation
$>$ Thermal capacitor
- Store thermal energy
- Specific heat \times volume \times density
> Electrothermal transducer
- Converts electrical dissipation into heat current

Outline

> Review

> Lumped-element modeling: self-heating of resistor
> Analyzing problems in space and 1/space

- The DC Steady State - the Poisson equation
» Finite-difference methods
» Eigenfunction methods
- Transient Response
» Finite-difference methods
» Eigenfunction methods
$>$ Thermoelectricity

Measuring temperature with the bolometer

> So far, we know how to convert an input heat flux into a temp change

How do we convert that temp change back into the electrical domain?

Image by MIT OpenCourseWare.

\[

\]

TCR

> Resistance changes with temperature (TCR)

- Beware, TCR is not constant!

We can use resistor as a hotplate or a temperature sensor

$$
\begin{aligned}
& R(T)=R_{0}\left[1+\alpha_{R}\left(T-T_{0}\right)\right] \\
& \Delta R=\frac{R-R_{0}}{R_{0}}=\alpha_{R} \Delta T
\end{aligned}
$$

Coupling back into the electrical domain

$>$ We can define a

transducer that uses TCR to convert back into electrical domain
$>$ In order to measure electrical R, we need to introduce a voltage
 \& current
$>$ This current will
couple back and induce its own ΔT

Thermo - electrical coupling

$>$ This is our prior
electrothermal transducer

$>$ We can add in the current source due to Joule heating
> The current source is
 dependent on R, which is dependent on ΔT, and so on
$>$ What we will want is for $I_{Q} 川 I^{2} R$

Example: Self-heating of a resistor

$>$ First, assume input $\mathrm{I}_{\mathrm{Q}}=0$
$>$ Now, electrical port is input, temp change is output
$>$ Two ways to drive the resistor, current source or voltage source - it sometimes matters

Current-source drive

$$
\begin{gathered}
\frac{\Delta T}{I_{Q}}=\frac{R_{T}}{1+R_{T} C_{T} s} \\
\Delta T\left(1+R_{T} C_{T} s\right)=I_{Q} R_{T} \\
\Delta T+\frac{d \Delta T}{d t} R_{T} C_{T}=I_{Q} R_{T} \\
\begin{array}{l}
\text { Expand out } \\
\text { into D.E. }
\end{array} \\
\Delta T+\frac{d \Delta T}{d t} R_{T} C_{T}=I^{2} R_{0}\left(1+\alpha_{R} \Delta T\right) R_{T}=I^{2} R_{0}\left(1+\alpha_{R} \Delta T\right)
\end{gathered}
$$

Example: Self-heating of a resistor

First-order system with feedback results

$$
\begin{gathered}
\frac{d \Delta T}{d t} R_{T} C_{T}=-\Delta T\left(1-I^{2} R_{0} \alpha_{R} R_{T}\right)+I^{2} R_{0} R_{T} \\
\frac{d \Delta T}{d t}+\Delta T \frac{\left(1-I^{2} R_{0} \alpha_{R} R_{T}\right)}{R_{T} C_{T}}=\frac{I^{2} R_{0}}{C_{T}} \\
\frac{d y}{d t}+a y=b \\
\tau_{I}=\frac{R_{T} C_{T}}{\left(1-I^{2} R_{0} \alpha_{R} R_{T}\right)} \\
\frac{I^{2} R_{0}}{C_{T}} \\
\Delta T_{S S, I}=\frac{\left(1-I^{2} R_{0} \alpha_{R} R_{T}\right)}{R_{T} C_{T}}=\frac{R_{0} R_{T} I^{2}}{1-\alpha_{R} R_{0} R_{T} I^{2}}
\end{gathered}
$$

Collect terms and rearrange

Recognize
D.E. form

Pick out quantities of interest

This blows up when

$$
I^{2}=\frac{1}{\alpha_{R} R_{0} R_{T}}
$$

For $\alpha_{R}>0$

Example: Self-heating of a resistor

$>$ What changes for voltage-drive?

$$
\begin{aligned}
& \frac{\Delta T}{I_{Q}}=\frac{R_{T}}{1+R_{T} C_{T} s} \\
& \Delta T\left(1+R_{T} C_{T} s\right)=I_{Q} R_{T} \\
& \Delta T+\frac{d \Delta T}{d t} R_{T} C_{T}=I_{Q} R_{T} \\
& I_{Q}=\frac{V^{2}}{R}=\frac{V^{2}}{R_{0}\left(1+\alpha_{R} \Delta T\right)} \\
& I_{Q} \approx \frac{V^{2}}{R_{0}}\left(1-\alpha_{R} \Delta T\right)
\end{aligned} \begin{aligned}
& \text { This now } \\
& \text { Thifferent leads to } \\
& \text { negative feedback } \\
& \text { for } \alpha_{R}>\mathbf{0}
\end{aligned}
$$

Results of modeling

$>$ A positive TCR resistor driven from a current source can go unstable - fuse effect
> When dealing with the electrostatic actuator, we observed that very different behavior was found depending on whether the system was voltage-driven or current-driven
> Here we see that, depending on the way the electrical domain couples to the thermal energy domain, it is also important to look at the drive conditions of a system.

Back to the bolometer

> Assume we want to measure $\mathrm{I}_{\mathrm{Q}}=1 \mathrm{nW}$ with 1% accuracy
$>$ This limits current one can use for measurement
$>$ For Honeywell bolometer, $R_{0} \sim 50 \mathrm{k} \Omega, \alpha_{\mathrm{R}} \sim-2 \% / \mathrm{K}, \mathrm{R}_{\mathrm{T}} \sim 10^{7}$ K/W

$$
\begin{gathered}
\Delta T_{\text {SS,I }}=\frac{R_{0} R_{T} I^{2}}{1-\alpha_{R} R_{0} R_{T} I^{2}} \approx R_{0} R_{T} I^{2} \\
\Delta T_{S S, V}=\frac{R_{T} V^{2} / R_{0}}{1+\alpha_{R} R_{T} V^{2} / R_{0}} \approx R_{T} V^{2} / R_{0} \\
\Delta R_{\text {meas }}=\alpha_{R} R_{T} \frac{V^{2}}{R_{0}} \\
\Delta R_{\text {signal }}=\alpha_{R} R_{T} I_{Q} \\
\Delta R_{\text {meas }}=\alpha_{R} R_{T} \frac{V^{2}}{R_{0}} \leq 0.01 \alpha_{R} R_{T} I_{Q} \\
V \leq \sqrt{\frac{I_{Q} R_{0}}{100}}
\end{gathered}
$$

$>$ Input signal will create $\Delta T=10$ mK
$>$ This produces $\Delta R_{\text {signal }}=2 \times 10^{-4}$, or a 10Ω resistance change
$>$ Voltage must be $<0.7 \mathrm{mV}$

Outline

> Review

$>$ Lumped-element modeling: self-heating of resistor
> Analyzing problems in space and 1/space

- The DC Steady State - the Poisson equation
» Finite-difference methods
» Eigenfunction methods
- Transient Response
» Finite-difference methods
» Eigenfunction methods
$>$ Thermoelectricity

Space and reciprocal space

$>$ We have thus far focused on "big" lumped-element modeling to design and analyze systems
$>$ This isn't the only way to proceed
$>$ We can chop up the model into many small "lumped elements \rightarrow discretize in space
$>$ Or we can approximate the answer using series methods \rightarrow discretize in reciprocal space

DC Steady State

> The Poisson Equation
$>$ Boundary conditions

- Dirichlet - sets value on boundary

$$
\text { Fixes }\left.T(r)\right|_{\text {boundary }}
$$

- Neumann - sets slope on boundary \rightarrow Flux

$$
\frac{\partial T}{\partial t}-D \nabla^{2} T=\left.\frac{1}{\tilde{C}} \tilde{P}\right|_{\text {sources }}
$$

$$
\text { Fixes }\left.\frac{d T}{d n}\right|_{\text {boundary }}
$$

- Mixed - sets some function of value and slope
> The Poisson Equation is linear
- Can use superposition methods

Finite-Difference Solution

> We can generate an equivalent circuit by discretizing the equation in space
> A numerical algorithm with a

$$
\begin{aligned}
& D \nabla^{2} T=-\left.\frac{1}{\widetilde{C}} \tilde{P}\right|_{\text {sources }} \\
& D \frac{d^{2} T}{d x^{2}}=-\left.\frac{1}{\widetilde{C}} \tilde{P}\right|_{\text {sources }}
\end{aligned}
$$ circuit equivalent

$>$ In 1-D, divide bar into N segments and $\mathrm{N}+1$ nodes

$$
\left.\frac{d^{2} T}{d x^{2}}\right|_{x_{n}} \cong \frac{T\left(x_{n}+h\right)+T\left(x_{n}-h\right)-2 T\left(x_{n}\right)}{h^{2}}
$$

Equivalent Circuit

Can create an equivalent circuit for this equation

$$
\begin{gathered}
\frac{T\left(x_{n}+h\right)+T\left(x_{n}-h\right)-2 T\left(x_{n}\right)}{h^{2}}=-\frac{\tilde{P}\left(x_{n}\right)}{\kappa} \\
\left(T_{n+1}-T_{n}\right)+\left(T_{n-1}-T_{n}\right)=-h^{2} \frac{\tilde{P}\left(x_{n}\right)}{\kappa}
\end{gathered}
$$

Image by MIT OpenCourseWare. Adapted from Figure 12.1 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 302. ISBN: 9780792372462.

$$
I_{S, n}=(h A) \widetilde{P}\left(x_{n}\right) \quad \begin{aligned}
& \text { Define local } \\
& \text { current source }
\end{aligned}
$$

$$
\left(T_{n+1}-T_{n}\right)+\left(T_{n-1}-T_{n}\right)=-h \frac{I_{S, n}}{A \kappa}
$$

$$
\frac{\left(T_{n+1}-T_{n}\right)}{R_{n}}+\frac{\left(T_{n-1}-T_{n}\right)}{R_{n-1}}+I_{S, n}=0
$$

This is KCL at a node

Equivalent Circuit

> Let's apply this to 1-D self-heated resistor

At node N :

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
J. Voldman: 2.372J/6.777J Spring 2007, Lecture 13-21

Example: Self-heated resistor

$>$ Set up conductance matrix
> Solve
> Very appropriate for MATLAB
$>$ Can even generate the conductance matrix with MATLAB scripts

> At edges, impose B.C's
$\mathbf{G T}=\mathbf{P}$

Eigenfunction Solution

$>$ This is a standard method for solving linear partial differential equations
$>$ It leads to what amount to series expansion solutions, discretized in reciprocal space
$>$ Typically problems converge with only a few terms - THIS IS WHY IT IS USEFUL

$$
\nabla^{2} T=-\frac{\tilde{P}(x)}{\kappa}
$$

$$
\text { Eigenfunctions of } \nabla^{2}: \quad \frac{d^{2} \psi_{i}}{d x^{2}}=\lambda_{i} \psi_{i}
$$

Can use any linear combination of $e^{ \pm j k x}$, including $\sin (k x)$ and $\cos (k x)$
Values of k are determined by the boundary conditions

Eigenfunctions can be made orthonormal

$$
\int \psi_{j}^{*} \psi_{i} d x=\delta_{i j}
$$

[^0]
Eigenfunction Expansion

Assume:

$$
T(x)=\sum_{n=1}^{\infty} A_{n} \psi_{n}(x)
$$

Eigenfunctions for this problem:

$$
\psi_{n}(x)=c_{n} \sin \left(k_{n} x\right)
$$

Apply BC at $x=0, L$:

$$
\sin \left(k_{n} L\right)=0 \Rightarrow k_{n}=\frac{n \pi}{L} \text { for } n=1,2,3, \ldots
$$

Normalize:

Plug into DE:

$$
1=\int_{0}^{L} \psi_{n}^{2}(x) d x=\int_{0}^{L} c_{n}^{2} \sin ^{2}\left(k_{n} x\right) d x \Rightarrow \sqrt{\frac{2}{L}} \sin \left(k_{n} x\right)
$$

$$
\begin{aligned}
\frac{d^{2} T}{d x^{2}} & =-\frac{\tilde{P}(x)}{\kappa} \\
\sum_{1}^{\infty} k_{n}^{2} A_{n} \psi_{n}(x) & =\frac{\tilde{P}(x)}{\kappa}
\end{aligned}
$$

Eigenfunction Expansion

$$
\sum_{1}^{\infty} k_{n}^{2} A_{n} \psi_{n}(x)=\frac{\tilde{P}(x)}{\kappa}
$$

Multiply by orthogonal eigenfunction and integrate:

$$
\begin{array}{r}
k_{m}^{2} A_{m}=\frac{1}{\kappa} \int_{0}^{L} \int \sqrt{\frac{2}{L}} \sin \left(\frac{m \pi x}{L}\right) \tilde{P}(x) d x \\
A_{m}=\frac{1}{k_{m}^{2} \kappa} \sqrt{\frac{2}{L}} \int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \widetilde{P}(x) d x
\end{array}
$$

Eigenfunction Expansion

For uniform

 power density:$$
\begin{aligned}
& A_{m}=\frac{\widetilde{P}_{0}}{k_{m}^{2} \kappa} \sqrt{\frac{2}{L}} \int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) d x \\
& A_{n}=\frac{\widetilde{P}_{0}}{k_{n}^{3} \kappa} \sqrt{\frac{2}{L}}\left(1-(-1)^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T(x)=\sum_{n=1}^{\infty} A_{n} \psi_{n}(x) \\
& T(x)=\sum_{n=1}^{\infty} \frac{\widetilde{P}_{0}}{k_{n}^{3} \kappa} \sqrt{\frac{2}{L}}\left(1-(-1)^{n}\right) \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \\
& T(x)=\frac{4 L^{2} \widetilde{P_{0}}}{\pi^{3} \kappa} \sum_{n \text { odd }} \frac{1}{3} \sin \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

The Details

Final answer: $T(x)=\frac{4 \tilde{P} L^{2}}{\kappa \pi^{3}} \sum_{n \text { odd }} \frac{\sin (n \pi x / L)}{n^{3}}$

Power density:

$$
\tilde{P}_{o}=\frac{I_{e}^{2} R}{\text { volume }}=\frac{I_{e}^{2}}{\sigma_{e} A^{2}}
$$

At $x=L / 2$:

$$
T_{\max }=\left(\frac{4}{\pi^{3}}\right) \frac{I_{e}^{2} L^{2}}{\sigma_{e} \kappa A^{2}}\left[1-\frac{1}{3^{3}}+\frac{1}{5^{3}}+\cdots\right]
$$

Even if we consider only the first term in the expansion, we find

$$
T_{\max }=\left(\frac{1}{7.75}\right) \frac{I_{e}^{2} L^{2}}{\sigma_{e} \kappa A^{2}} \quad \text { compared to the exact solution of }\left(\frac{1}{8}\right) \frac{I_{e}^{2} L^{2}}{\sigma_{e} \kappa A^{2}}
$$

Outline

> Review

$>$ Lumped-element modeling: self-heating of resistor
> Analyzing problems in space and 1/space

- The DC Steady State - the Poisson equation
» Finite-difference methods
» Eigenfunction methods
- Transient Response
» Finite-difference methods
» Eigenfunction methods
$>$ Thermoelectricity

Transient Modeling

Finite-difference method

- Simply add a thermal capacitance to ground at each node of the finite-difference network. These circuits can be analyzed with SPICE or other circuit simulators.

Image by MIT OpenCourseWare.
Adapted from Figure 12.1 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 302.
$C=h A \rho_{m} \tilde{C}_{m}$
\uparrow
Node volume

Transient Modeling

Finite-difference method

- What does the matrix representation look like now?

$$
\begin{gathered}
\mathrm{T}_{n, 1} \\
I_{S, n}+G_{n-1}\left(T_{n-1}-T_{n}\right)+G_{n}\left(T_{n+1}-T_{n}\right)-C_{n} \dot{T}_{n}=0 \\
-G_{n-1}\left(T_{n-1}-T_{n}\right)-G_{n}\left(T_{n+1}-T_{n}\right)+C_{n} \dot{T}_{n}=I_{S, n} \\
\Omega \\
\mathbf{G T}+\mathbf{C} \dot{\mathbf{T}}=\mathbf{P} \\
\dot{\mathbf{T}}=\mathbf{A T}+\mathbf{B P}
\end{gathered}
$$

Transient Modeling (continued)

Eigenfunction method:

- Spatial response same as before
- Use impulse response in time to eventually get Laplace transfer function
- Use separation of variables to separate space and time

$$
T(x, t)=\hat{T}(x) Y(t)
$$

$$
\frac{d T}{d t}-D \nabla^{2} T=\left.\frac{1}{\widetilde{C}} \tilde{P}\right|_{\text {sources }}
$$

$$
\widetilde{P}(x, t)=\tilde{Q}_{0}(x) \delta(t) \quad\left[\mathrm{J} / \mathrm{m}^{3}\right]
$$

Separate
variables

$$
\begin{aligned}
& \text { (Y) } \frac{d T}{d t}-D \nabla^{2} T=0 \quad t>0^{+} \\
& \hat{T}(x) \frac{d Y(t)}{d t}-D Y(t) \frac{d^{2} \hat{T}(x)}{d x^{2}}=0 \\
& D \frac{1}{\hat{T}(x)} \frac{d^{2} \hat{T}(x)}{d x^{2}}=-\alpha=\frac{1}{Y(t)} \frac{d Y(t)}{d t}
\end{aligned}
$$

Transient Modeling (continued)

Eigenfunction method:

- Time response is a sum of decaying exponentials

$$
D \frac{1}{\hat{T}(x)} \frac{d^{2} \hat{T}(x)}{d x^{2}}=-\alpha=\frac{1}{Y(t)} \frac{d Y(t)}{d t}
$$

- Time and space are linked via eigenvalues

$$
Y(t)=e^{-\alpha t}
$$

$$
T(x, t)=\hat{T}(x) e^{-\alpha t}
$$

$$
D \frac{d^{2} \hat{T}}{d x^{2}}=-\alpha \hat{T}
$$

$$
\hat{T}(x)=\sum_{n} A_{n} \sqrt{\frac{2}{L}} \sin \left(k_{n} x\right)
$$

$$
k_{n}^{2} D=\alpha \Rightarrow k_{n}^{2}=\frac{\alpha}{D}=\left(\frac{n \pi}{L}\right)^{2}
$$

Transient Modeling (continued)

> Eigenfunction method:

- Match I.C. at $\boldsymbol{t}=0$ to get series coefficients
- $T(x, 0)$ is related to instantaneous heat input and heat capacity

$$
\begin{aligned}
& T(x, t)=\sum_{n} A_{n} \sqrt{\frac{2}{L}} \sin \left(k_{n} x\right) e^{-\alpha_{n} t} \\
& T(x, 0)=\sum_{n} A_{n} \sqrt{\frac{2}{L}} \sin \left(k_{n} x\right)=\frac{\tilde{Q}_{0}}{\tilde{C}} \\
& A_{n}=\frac{\tilde{Q}_{0}}{\tilde{C}} \sqrt{\frac{2}{L}} \int_{0}^{L} \sin \left(k_{n} x\right) d x \\
& A_{n, o d d}=\frac{\tilde{Q}_{0}}{\tilde{C}} \sqrt{\frac{2}{L}} \frac{2}{k_{n}}=\frac{\tilde{Q}_{0}}{\tilde{C}} \sqrt{\frac{2}{L}} \frac{2 L}{n \pi} \\
& \hat{T}(x, t)=\sum_{n, \text { odd }} \frac{4}{n \pi} \frac{\tilde{Q}_{0}}{\tilde{C}} \sin \left(k_{n} x\right) e^{-\alpha_{n} t}
\end{aligned}
$$

Example: Impulse Response

> Uniformly heated bar, an impulse in time
Result is a series of decaying exponentials in time

Image by MIT OpenCourseWare.
Adapted from Figure 12.3 in Senturia, Stephen D. Microsystem Design. Boston,
MA: Kluwer Academic Publishers, 2001, p. 308. ISBN: 9780792372462.
$T(x, t)=\frac{\tilde{Q}_{0}}{\tilde{C}} \sum_{n \text { odd }}\left(\frac{4}{n \pi}\right) \sin \left(\frac{n \pi x}{L}\right) e^{-\alpha_{n} t}$
where $\quad \alpha_{\mathrm{n}}=\frac{n^{2} \pi^{2} D}{L^{2}} \quad \begin{aligned} & \text { lower spatial frequencies } \\ & \text { decay slower }\end{aligned}$

Using the Eigenfunction Solution

$>$ We can go from solution to equivalent circuit

First, we will lump

- Heat current conducted out

$$
I_{Q}=-\kappa\left(\left.\int_{0}^{W} \int_{0}^{H} \frac{\partial T}{\partial x}\right|_{x=0} d z d y-\left.\int_{0}^{W} \int_{0}^{H} \frac{\partial T}{\partial x}\right|_{x=L} d z d y\right)
$$

$$
I_{Q}(t)=\left(\kappa W H \frac{8}{L} \sum_{n \text { odd }} e^{-\alpha_{n} t}\right) \frac{\tilde{Q}_{0}}{\tilde{C}}
$$ as output

- Choose heat current source as input $\tilde{P}=\tilde{Q}_{0} \delta(t)$
$>$ Then take Laplace
> Then identify equivalent circuit for $1^{\text {st }}$ order system
- This is NOT unique

$$
\begin{aligned}
& \rightarrow I_{Q, n}(s)=\frac{8 \kappa W H}{\alpha_{n} L} \frac{1}{1+s / \alpha_{n}} \frac{\tilde{Q}_{0}}{\tilde{C}} \\
& Y(s)=\frac{1}{1+s / \alpha_{n}} X(s) \\
& =\frac{c^{R}}{=}
\end{aligned}
$$

Image by MIT OpenCourseWare.
Adapted from Figure 12.4 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 310. ISBN: 9780792372462.

[^1]
Using the Eigenfunction Solution

$>$ Each term in the eigenfunction solution has a simple circuit representation
> This means that if the eigenfunction solution converges with a few terms, the lumped circuit is very simple

Image by MIT OpenCourseWare.
Adapted from Figure 12.4 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 310. ISBN: 9780792372462.

$$
\begin{aligned}
& C_{n}=(\text { mode shape })(\text { volume }) \tilde{C} \\
& C_{n}=\tilde{C} \int_{0}^{H} \int_{0}^{W} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) d x d y d z=\frac{2}{n \pi} L H W \tilde{C}
\end{aligned}
$$

$$
\frac{1}{R_{n} C_{n}}=\alpha_{n}=\frac{n^{2} \pi^{2} D}{L^{2}}
$$

$$
\Downarrow
$$

$$
R_{n}=\left(\frac{1}{n \pi}\right) \frac{L / 2}{\kappa W H}
$$

$$
Q_{0, n}(s)=\frac{8 \kappa W H}{\alpha_{n} L} \frac{\tilde{Q}_{0}}{\tilde{C}}=\frac{8 \kappa W H L}{n^{2} \pi^{2} D} \frac{\tilde{Q}_{0}}{\tilde{C}}
$$

$$
Q_{0, n}(s)=\left(\frac{8}{n^{2} \pi^{2}}\right)(W H L) \tilde{Q}_{0}
$$

$$
Q_{0, n}(t)=\left(\frac{8}{n^{2} \pi^{2}}\right)(W H L) \tilde{Q}_{0} \delta(t)
$$

A Three-Mode Equivalent Circuit

For the first three terms in the eigenfunction expansion, we combine the three single-term circuits appropriately

Image by MIT OpenCourseWare. Adapted from Figure 12.5 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 312. ISBN: 9780792372462.

Image by MIT OpenCourseWare.
Adapted from Figure 12.6 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 313. ISBN: 9780792372462.

Outline

> Review

$>$ Lumped-element modeling: self-heating of resistor
$>$ The DC Steady State - the Poisson equation

- Finite-difference methods
- Eigenfunction methods
> Transient Response
- Finite-difference methods
- Eigenfunction methods
$>$ Thermoelectricity

Microscale temperature measurement/control
$>$ We have seen that a resistor can be used as
a temperature sensor and hotplate
$>$ There are other techniques to measure or control temperature at microscale

- Couple temperature to material properties
> Sensors
- TCR: temperature \rightarrow resistance change
- Thermal bimorph: temperature \rightarrow deflection
- Thermoelectrics: temperature \rightarrow induced voltage

Coupled Flows

> In an ideal world, one driving
force creates one flux
$>$ In our world, multiple forces create multiple fluxes

- Drift-diffusion in semiconductors or electrolytes

$$
J_{Q}=-\kappa \nabla T
$$

$$
J_{e}=-\sigma_{e} \nabla \varphi
$$

$$
J_{e}=-z_{n} q_{e} D_{n} \nabla n-q_{e} n \mu_{n} \nabla \varphi
$$

$>$ In general, all the different fluxes are coupled
$>$ If you set it up right, the $L_{i j}$ matrix is reciprocal

- The Onsager Relations

Quantities in the Onsager Relations

> To explain thermoelectrics, we must look at coupling between heat flow and electric field

$$
\begin{aligned}
& J_{e}=-L_{11} \nabla \varphi-L_{12} \nabla T \\
& \frac{J_{Q}}{T}=-L_{21} \nabla \varphi-L_{22} \nabla T
\end{aligned}
$$

$>$ This is written in a standard form

Resistivity
Seebeck coefficient
$-\nabla \varphi=\rho_{e} J_{e}+\alpha_{S} \nabla T$
$J_{Q}=\Pi J_{e}-\kappa \nabla T$

Peltier coefficient Thermal conductivity

Thermocouples

> Analyze the potential gradient around a closed loop under the assumption of zero current ($\mathrm{J}_{\mathrm{e}}=0$)
> Thermocouple voltage depends on the difference in Seebeck Coefficient between the two materials, integrated from one temperature to the other
$>$ It is a BULK EFFECT, not a junction effect

Image by MIT OpenCourseWare.
Adapted from Figure 11.10 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 294. ISBN: 9780792372462.

$$
\begin{gathered}
-\nabla \varphi=\alpha_{S} \nabla T \\
\Downarrow
\end{gathered}
$$

$$
V_{a b}=\int_{T_{a}}^{T_{b}} \alpha_{S}(T) d T
$$

> It is possible to make thermocouples by accident when using different materials in MEMS devices in regions that might have temperature gradients!

Go around the loop

$$
V_{T C}=\int_{T_{C}}^{T_{H}}\left(\alpha_{S, 2}-\alpha_{S, 1}\right) d T
$$

$$
V_{T C}=\left(\alpha_{S, 2}-\alpha_{S, 1}\right) \Delta T
$$

For small temp rises

MEMS Thermocouples

> Many thermocouples in series create higher sensitivity (V/K)
> These are known as thermopiles
> In MEMS thermopiles, often use Al/Si or Al/polySi
$>$ Able to get good thermal isolation of sensing element
$>$ Number of thermocouples is limited by leg width

- Increasing leg width decreases thermal resistance and thus Image removed due to copyright restrictions. temperature response

Conclusions

$>$ The thermal domain is a great way to transfer energy around

- Except that you have to pay the tax
$>$ We can model thermal problems using
- Equivalent circuits via lumped element models in space
»"Big" and "small"
- Equivalent circuits via lumped element models in reciprocal space

For Further Information

> Introduction to Heat Transfer, Incropera and DeWitt
> Analysis of Transport Phenomena, William Deen
> Solid-State Physics, Ashcroft and Mermim

[^0]: Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT

[^1]: Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
 J. Voldman: 2.372J/6.777J Spring 2007, Lecture 13-35

