Electronics A

Joel Voldman

Massachusetts Institute of Technology

Outline

> Elements of circuit analysis 〔-TODAY

> Elements of semiconductor physics

- Semiconductor diodes and resistors
- The MOSFET and the MOSFET inverterlamplifier
> Op-amps

Elements of circuit analysis

$>$ There are many ways to analyze circuits

$>$ Here we'll go over a few of them

- Elements laws, connection laws and KVL/KCL
- Nodal analysis
- Intuitive approaches
- Superposition

Lumped elements in circuits

Circuit elements (R, L,
 C) are lumped approximations of complex devices

$>$ The electrical capacitor

- What is the relation between Q and V ?

$$
\begin{gathered}
\nabla \times \mathbf{E}=0 \Rightarrow \mathbf{E}(\mathbf{r}, t)=-\nabla V(\mathbf{r}, t) \\
V(b)-V(a)=-\int_{a}^{b} \mathbf{E} \cdot d \mathbf{l}
\end{gathered}
$$

$$
V(b)-V(a)=V=E g \quad \Rightarrow \quad E=V / g
$$

$$
Q=\varepsilon A V / g=\frac{\varepsilon A}{g} V=C V
$$

$$
C=\frac{\varepsilon A}{g}
$$

Lumped elements in circuits

$>$ The electrical capacitor

- We can replace all of field theory with terminal relations
- And introduce an element with an element law
- As long as capacitor size << wavelength of electrical signal
» In general, MEMS are small
e.g., $\lambda=50 \mu \mathrm{~m} \rightarrow 600 \mathrm{GHz}$

Elements and element laws

> Do this with all three basic elements
$>$ Resistor
> Capacitor
> Inductor

Source elements

$>$ We need elements to provide energy into the circuit
$>$ Two common ones are voltage source and current source

KVL and KCL

$>$ These are continuity laws that allow us to solve circuits

> Kirchhoff's voltage law

- The oriented sum of voltages around a loop is zero
> Kirchhoff's voltage law
- The sum of currents entering a node is zero

Complex impedances

> For LTI systems, use complex impedances instead

- Implicitly working in frequency domain

Much easier circuit analysis
$>$ All elements treated the same, like
"resistors"

Cite as: Joel Voldman, course materials for $6.777 \mathrm{~J} / 2.372$ J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Let's analyze a circuit

1. Figure out what are you trying to determine
2. Replace elements with complex impedances

3. Assign across and through variables
4. Use KVL
5. Substitute in element laws

6. Solve

Let's analyze a circuit

1. Figure out what are you trying to determine

2. Replace elements with complex impedances

3. Assign across and

through variables

$$
V_{V}-V_{C}+V_{L}-V_{R}=0
$$

$$
V_{0}-i_{C} Z_{C}+i_{L} Z_{L}-i_{R} Z_{R}=0
$$

$$
i_{C}=-i_{L}=i_{R}
$$

laws

6. Solve

Let's analyze a circuit

1. Figure out what are you trying to determine
2. Replace elements with complex impedances
3. Assign across and through variables
4. Use KVL

$$
i_{R}=\frac{V_{0}}{Z_{C}+Z_{L}+Z_{R}}=\frac{V_{0}}{1 / C s+L s+R}
$$

5. Substitute in element laws

$$
V_{0}-i_{R} Z_{C}-i_{R} Z_{L}-i_{R} Z_{R}=0
$$

$$
i_{R}=\frac{C s}{L C s^{2}+R C s+1} V_{0}
$$

6. Solve

Example \#1

$>$ Solve for V_{L}

Nodal analysis

$>$ Element law approach becomes tedious for circuits with multiple loops

$>$ Nodal analysis is a KCL-based approach

Nodal analysis

1. Figure out what are you $\quad+V_{C}$. trying to determine
2. Replace elements with complex impedances

3. Assign node voltages \& ground node
4. Write KCL at each node
5. Solve for node voltages

Nodal analysis

1. Figure out what are you trying to determine
2. Replace elements with complex impedances
3. Assign node voltages \&
 ground node
4. Write KCL at each node

Node 1:

$$
v_{1}=V_{0}
$$

$$
\text { Node 2: } \quad i_{1}+i_{2}+i_{3}=0
$$

5. Solve for node voltages
6. Use node voltages to

$$
\frac{v_{1}-v_{2}}{Z_{C}}+\frac{0-v_{2}}{Z_{L}}+\frac{0-v_{2}}{Z_{R}}=0
$$ find what you care about

Nodal analysis

1. Figure out what are you trying to determine
2. Replace elements with complex impedances
3. Assign node voltages \& ground node
4. Write KCL at each node

5. Solve for node voltages

$$
v_{2}\left(Z_{L} Z_{R}+Z_{C} Z_{R}+Z_{L} Z_{C}\right)=V_{0} Z_{L} Z_{R}
$$

6. Use node voltages to

$$
v_{2}=V_{0} \frac{Z_{L} Z_{R}}{Z_{L} Z_{R}+Z_{C} Z_{R}+Z_{L} Z_{C}}
$$ find what you care about

Nodal analysis

1. Figure out what are you trying to determine
2. Replace elements with complex impedances
3. Assign node voltages \&

Example \#2

Cite as: Joel Voldman, course materials for 6.777 J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Intuitive methods

> Instead of "solving" the circuit using equations, use series/parallel tricks to analyze the circuit by inspection
> Current divider \& impedances in parallel

$$
\begin{aligned}
& i_{1}=i \frac{Z_{2}}{Z_{1}+Z_{2}} \\
& i_{2}=i \frac{Z_{1}}{Z_{1}+Z_{2}}
\end{aligned}
$$

- Both elements have SAME voltage
- Terminals connected together

$$
\begin{gathered}
V=i_{1} Z_{1}=i \frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} \\
Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}=Z_{1} / / Z_{2} \\
\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}
\end{gathered}
$$

Intuitive methods

> Voltage divider \& impedances in series

- Both elements have SAME current

$$
\begin{gathered}
V_{1}=V \frac{Z_{1}}{Z_{1}+Z_{2}} \\
V_{2}=V \frac{Z_{2}}{Z_{1}+Z_{2}} \\
i_{1}=\frac{V_{1}}{Z_{1}}=\frac{V}{Z_{1}+Z_{2}}=i \\
Z=Z_{1}+Z_{2}
\end{gathered}
$$

Intuitive methods

> Examples of elements NOT in series OR parallel

Z_{1} and Z_{3} in series Z_{2} and Z_{4} in series

Z_{3} and Z_{4} in parallel Z_{1} and Z_{3} NOT in series Z_{1} and Z_{2} NOT in parallel Z_{3} and Z_{4} NOT in parallel

Intuitive methods

$>$ Let's use this approach to solve a circuit

1. Figure out what are you trying to determine
2. Replace elements with complex impedances
3. Collapse circuit in terms of series/parallel relations till circuit is trivial
4. Re-expand to find signal of interest

$$
\begin{gathered}
V_{a}=V_{0} \frac{Z_{a}}{Z_{a}+Z_{C}} \\
i_{L}=\frac{V_{a}}{Z_{L}}
\end{gathered}
$$

Intuitive methods

> Let's use this approach to solve a circuit

$$
i_{L}=V_{0} \frac{Z_{a}}{Z_{a}+Z_{C}} \frac{1}{Z_{L}}=V_{0} \frac{Z_{R} / / Z_{L}}{Z_{R} / / Z_{L}+Z_{C}} \frac{1}{Z_{L}}
$$

1. Figure out what are you trying to determine
2. Replace elements with complex impedances

$$
\begin{gathered}
=V_{0} \frac{\frac{Z_{R} Z_{L}}{Z_{R}+Z_{L}}}{\frac{Z_{R} Z_{L}}{Z_{R}+Z_{L}}+Z_{C}} \frac{1}{Z_{L}} \\
=V_{0} \frac{Z_{R} Z_{L}}{Z_{R} Z_{L}+\left(Z_{R}+Z_{L}\right) Z_{C}} \frac{1}{Z_{L}} \\
=V_{0} \frac{R L s}{R L s+(R+L s) 1 / C s} \frac{1}{L s} \\
i_{L}=V_{0} \frac{R C s}{R L C s^{2}+L s+R}
\end{gathered}
$$ interest

Example \#3

Superposition

> These equivalent circuits are linear and obey the principles of superposition

- This can be useful
$>$ For circuits with multiple sources,
- Turn off all independent sources except one
- Solve circuit
- Repeat for all sources, then add responses
$>$ Turning off a voltage source gives a short circuit
$>$ Turning off a current source gives an open circuit

Superposition

For circuits with multiple

 sources,- Turn off all independent sources except one
- Solve circuit

- Repeat for all sources, then add responses

Find v_{2}

$$
v_{2}=I_{0} Z_{R} / / Z_{C}
$$

$$
v_{2}=V_{0} \frac{Z_{R}}{Z_{R}+Z_{C}}
$$

Superposition

For circuits with multiple

sources,

- Turn off all independent sources except one

$$
\begin{aligned}
& v_{2}=I_{0} Z_{R} / / Z_{C}+V_{0} \frac{Z_{R}}{Z_{R}+Z_{C}} \\
& v_{2}=I_{0} \frac{Z_{R} Z_{C}}{Z_{R}+Z_{C}}+V_{0} \frac{Z_{R}}{Z_{R}+Z_{C}} \\
& v_{2}=\frac{I_{0} R 1 / C s+V_{0} R}{R+1 / C s} \\
& v_{2}=\frac{I_{0} R+V_{0} R C s}{R C s+1}
\end{aligned}
$$

- Solve circuit
- Repeat for all sources, then add responses

Find v_{2}

Conclusions

> There are many ways to analyze equivalent circuits
> Use the simplest method at hand
> Element laws \& connection laws are OK for simple ckts
$>$ Nodal analysis works for most any circuit, but will be tedious for complicated circuits
$>$ Try to use intuitive approaches whenever possible

