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Outline
> Regroup

> Beam bending
• Loading and supports
• Bending moments and shear forces
• Curvature and the beam equation
• Examples:  cantilevers and doubly supported beams

> A quick look at torsion and plates
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Recall:  Isotropic Elasticity
> For a general case of loading, the constitutive relationships 

between stress and elastic strain are as follows

> 6 equations, one for each normal stress and shear stress
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What we are considering today
> Bending in the limit of small deflections

> For axial loading, deflections are small until something bad 
happens

• Nonlinearity, plastic deformation, cracking, buckling
• Strains typically of order 0.1% to 1%

> For bending, small deflections are typically less than the 
thickness of the element (i.e. beam, plate) in question  
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What we are NOT considering today
> Basically, anything that makes today’s theory not apply (not as 

well, or not at all)

> Large deflections
• Axial stretching becomes a noticeable effect

> Residual stresses
• Can increase or decrease the ease of bending
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Our trajectory

> What are the loads and the supports?

> What is the bending moment at point x along the beam?

> How much curvature does that bending moment create in the 
structure at x?  (Now you have the beam equation.)

> Integrate to find deformed shape
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Adapted from Rebeiz, Gabriel M. RF MEMS: Theory, Design, and
Technology. Hoboken, NJ: John Wiley, 2003. ISBN: 9780471201694.
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Outline
> Regroup

> Bending
• Loading and supports
• Bending moments and shear forces
• Curvature and the beam equation
• Examples:  cantilevers and doubly supported beams

> A quick look at torsion and plates
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Types of Loads
> Three basic types of loads:

• Point force (an old friend, with its own specific point of 
application)

• Distributed loads (pressure) 
• Concentrated moment (what you get from a screwdriver, with 

a specific point of application)
• The forces and moments work together to make internal 

bending moments – more on this shortly

F = 
point load

M = 
concentrated moment

q = distributed load
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Types of supports
> Four basic boundary conditions:

• Fixed:  can’t translate at all, can’t rotate 
• Pinned:  can’t translate at all, but free to rotate (like a hinge)
• Pinned on rollers:  can translate along the surface but not off 

the surface, free to rotate
• Free:  unconstrained boundary condition

Image by MIT OpenCourseWare.
Adapted from Figure 9.5 in: Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 207. ISBN: 9780792372462.
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Reaction Forces and Moments
> Equilibrium requires that the total force on an object be zero 

and that the total moment about any axis be zero

> This gives rise to reaction forces and moments

> “Can’t translate” means support can have reaction forces

> “Can’t rotate” means support can have reaction moments
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Image by MIT OpenCourseWare.
Adapted from Figure 9.7 in: Senturia, Stephen D. Microsystem Design .
Boston, MA: Kluwer Academic Publishers, 2001, p. 209. ISBN: 9780792372462.



Internal forces and moments
> Each segment of beam must also be in equilibrium
> This leads to internal shear forces V(x) and bending moments 
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Adapted from Figure 9.7 in Senturia, Stephen D. Microsystem Design
Boston, MA: Kluwer Academic Publishers, 2001, p. 209. ISBN: 9780792372462.



esign and Fabrication of Microelectromechanical Devices, Spring 2007. MIT Cite as: Carol Livermore, course materials for 6.777J / 2.372J D
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

C. Livermore:  6.777J/2.372J Spring 2007, Lecture 7 - 12

Some conventions

Moments:

Image by MIT OpenCourseWare.
Adapted from Figure 9.8 in: Senturia, Stephen D.
Microsystem Design. Boston, MA: Kluwer Academic
Publishers, 2001, p. 210. ISBN: 9780792372462.
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ston, MA: Kluwer Academic
. ISBN: 9780792372462.
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Combining all loads
> A differential beam element, subjected to point loads, 

distributed loads and moments in equilibrium, must obey 
governing differential equations

q
dx
dV

VdVVqdxFT

−=⇒

−++= )(

V
dx

dM

dxqdxdxdVVMdMMM T

=⇒

−+−−+=
2

)()(

Image by MIT OpenCourseWare.
Adapted from Figure 9.8 in: Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic
Publishers, 2001, p. 210. ISBN: 9780792372462.
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Outline
> Regroup

> Bending
• Loading and supports
• Bending moments and shear forces
• Curvature and the beam equation
• Examples:  cantilevers and doubly supported beams

> A quick look at torsion and plates
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Pure bending
> Important concept:  THE NEUTRAL AXIS

> Axial stress varies with transverse position relative to the 
neutral axis
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Locating the neutral axis
> In pure bending, locate the neutral axis by imposing equilibrium

of axial forces 

> The neutral axis is in the middle for a one material beam of 
symmetric cross-section.  

> Composite beams:  if the beam just has a very thin film on it, can 
approximate neutral axis unchanged

> Composite beams:  with films of comparable thickness, change 
in E biases the location of the neutral axis
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Curvature in pure bending
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Useful case:  rectangular beam
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Differential equation of beam bending
> Relation between curvature and the applied load
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Adapted from Figure 9.11 in: Senturia, Stephen D. Microsystem Design.
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Anticlastic curvature
> If a beam is bent, then the Poisson effect causes 

opposite bending in the transverse direction
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Example: Cantilever with point load
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cantilever
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Spring Constant for Cantilever
> Since force is applied at tip, if we find maximum tip 

displacement, the ratio of displacement to force is the 
spring constant.
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Stress in the Bent Cantilever
> To find bending stress, we find the radius of 

curvature, then use the pure-bending case to find 
stress
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Tabulated solutions
> Solutions to simple situations available in introductory 

mechanics books
• Point loads, distributed loads, applied moments
• Handout from Crandall, Dahl, and Lardner, An Introduction to 

the Mechanics of Solids, 1999, p. 531.

> Linearity:  you can superpose the solutions

> Can save a bit of time

> Solutions use nomenclature of singularity functions
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Singularity functions
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Overconstraint
> A cantilever’s single support provides the necessary support reactions 

and no more

> A fixed-fixed beam has an additional support, so it is overconstrained

> Static indeterminacy:  must consider deformations and reactions to 
determine state of the structure

> Many MEMS structures are statically indeterminate:  flexures, optical 
MEMS, switches,…

> What this means for us
• Failure modes and important operational effects:  stress stiffening, 

buckling
• Your choice of how to calculate deflections
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Example:  center-loaded fixed-fixed beam

> Option 1:  (general)
• Start with beam equation in terms of q
• Express load as a delta function
• Integrate four times
• Four B.C. give four constants

> Option 2:  (not general)
• Invoke symmetry

> Option 3:  (general)
• Pretend beam is a cantilever with as yet unknown moment and force 

applied at end such that w(L) = slope(L) = 0
• Using superposition, solve for deflection and slope everywhere
• Impose B.C. to determine moment and force at end
• Plug newly-determined moment and force into solution, and you’re 

done
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Integration using singularity functions
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Comparing spring constants
> Center-loaded fixed-fixed beam (same dimensions as previous)

> Tip-loaded cantilever beam, same dimensions

> Uniaxially loaded beam, same dimensions
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Outline
> Regroup

> Bending
• Loading and supports
• Bending moments and shear forces
• Curvature and the beam equation
• Examples:  cantilevers and doubly supported beams

> A quick look at torsion and plates
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Torsion

Digital Light Processing is a trademark of Texas Instruments.

The treatment of torsion mirrors that of bending.

Digital Light Processing™ Technology:  Texas Instruments

Images removed due to copyright restrictions.
Figure 51 on p. 39 in: Hornbeck, Larry J. "From Cathode Rays to Digital Micromirrors: A History of
Electronic Projection Display Technology." Texas Instruments Technical Journal 15, no. 3 (July-September  1998): 7-46.

Images removed due to copyright restrictions.
Figures 48 and 50 in: Hornbeck, Larry J. "From Cathode Rays to Digital Micromirrors: A History of
Electronic Projection Display Technology." Texas Instruments Technical Journal 15, no. 3 (July-September  1998): 7-46.
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Bending of plates
> A plate is a beam that is so 

wide that the transverse 
strains are inhibited, both 
the Poisson contraction 
and its associated 
anticlastic curvature

> This leads to additional 
stiffness when trying to 
bend a plate
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Plate in pure bending
> Analogous to beam bending, with the limit on transverse strains

> Two radii of curvature along principal axes

> Stresses along principal axes
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Plate in pure bending
> Relate moment per unit width of plate to curvature

> Treat x and y equivalently

> Note that stiffness comes from flexural rigidity as for a beam
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Plate in pure bending
> Recall that M is two derivatives away from a distributed load, 

and that 

> This leads to the equation for small amplitude bending of a plate

> Often solve with polynomial solutions (simple cases) or 
eigenfunction expansions
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Where are we now?
> We can handle small deflections of beams and plates

> Physics intervenes for large deflections and residual 
stress, and our solutions are no longer correct

> Now what do we do?
• Residual stress:  include it as an effective load
• Large deflections: use Energy Methods
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