Lumped-element Modeling with Equivalent Circuits

Joel Voldman

Massachusetts Institute of Technology

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Outline

- > Context and motivation
- > Lumped-element modeling
- > Equivalent circuits and circuit elements
- > Connection laws

Context

> Where are we?

- We have just learned how to make structures
- About the properties of the constituent materials
- And about elements in two domains
 - » structures and electronics

> Now we are going to learn about modeling

- Modeling for arbitrary energy domains
- How to exchange energy between domains
 - » Especially electrical and mechanical
- How to model dynamics

> After, we start to learn about the rest of the domains

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Inertial MEMS

> Analog Devices Accelerometer

- ADXL150
- Acceleration → Changes gap → capacitance → electrical output

Image removed due to copyright restrictions. Photograph of a circuit board.

Image removed due to copyright restrictions. Micrograph of machined microchannels.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

RF MEMS

> Use electrical signal to create mechanical motion

> Series RF Switch (Northeastern & ADI)

Cantilever closes circuit when actuated → relay

Image removed due to copyright restrictions.

Image removed due to copyright restrictions. Figure 11 on p. 342 in: Zavracky, P. M., N. E. McGruer, R. H. Morrison, and D. Potter. "Microswitches and Microrelays with a View Toward

Microwave Applications." International Journal of RF and Microwave Computer-Aided Engineering 9, no. 4 (1999): 338-347.

Imageby MIT OpenCourseWare.

Adapted from Rebeiz, Gabriel *MRF MEMS: Theory, Design, and Technology.* Hoboken, NJ: John Wiley, 2003. ISBN: 9780471201694.

Zavracky et al., Int. J. RF Microwave CAE, 9:338, 1999, via Rebeiz RF MEMS

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

> These systems are complicated 3D geometries

> Transform electrical energy \leftarrow > mechanical energy

- > How do we design such structures?
 - Multiphysics FEM
 - » Solve constitutive equations
 - at each node
 - » Tedious but potentially most accurate

Image removed due to copyright restrictions.

> Is there an easier way?

Distorted switch (Coventor)

- That will capture dimensional dependencies?
- Allow for quick iterative design?
- Maybe get us within 10-20%?

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

RF MEMS Switch

- > What we'd really like to know
 - What voltage will close the switch?
 - What voltage will open the switch (when closed)?
 - How fast will this happen?
 - What are the tradeoffs between these variables?
 - » Actuation voltage vs. maximum switching frequency

So let's restrict ourselves to relations between voltage and tip deflection

• Hah! – we have "lumped" our system

Outline

- > Context and motivation
- > Lumped-element modeling
- > Equivalent circuits and circuit elements
- > Connection laws

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- > What is a lumped element?
 - A <u>discrete</u> object that can <u>exchange energy</u> with other objects
 - An object whose internal physics can be combined into terminal relations
 - Whose size is smaller than wavelength of the appropriate signal
 - » Signals do not take time to propagate

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Lumped elements

- > Electrical capacitor
- > Spring
- > Rigid mass
 - Push on it and it moves
 - Relation between force and displacement
- > Fluidic channel
 - Apply pressure and fluid flows instantaneously
 - Relation between pressure and volumetric flow rate

Image by MIT OpenCourseWare.

Adapted from Figure 9.7 in: Senturia, Stephen D. *Microsystem Design*. Boston, MA: Kluwer Academic Publishers, 2001, p. 209. ISBN: 9780792372462.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Pros/cons of lumped elements

> Pros

- Simplified representations that carry dimensional dependencies
- Can do equivalent circuits
- Static and dynamic analyses

> Cons

- Lose information
 - » Deflection along length of cantilever
- Will not get things completely right
 - » Capacitance due to fringing fields

So how do we go about lumping?

> First, we need input/output relations

- This requires solving physics
- This is what we do in the <u>individual</u> domains
 - » We have already done this in electrical and mechanical domains
- > For cantilever RF switch
 - What is relation between force and tip deflection?
 - Not voltage and deflection
 - » Different energy domains

RF Switch mechanical model

- > We have seen that there is a linear relation between force and tip deflection
 - Cantilever behaves as linear spring k
 - CAVEAT: *k* is specific for this problem
 - Different k's for same cantilever but
 - » Distributed force applied over whole cantilever
 - » Point force applied at end
 - » Deflection of cantilever middle is needed
 - » Etc.
- > Lesson: Don't just use equation out of a book

 $F = \mathbf{k}x$

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

RF Switch mechanical model

- > What else is needed for model?
- > Inertia of cantilever → Lumped mass
- > Energy loss → Lumped dashpot
 - Due to air damping

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

How do we connect these together?

- Intuition and physics
- > Example: cantilever switch
 - Tip movement (x) stretches spring
 - And causes damping
 - Tip has mass associated with it
 - All elements have same displacement

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Outline

- > Context and motivation
- > Lumped-element modeling
- > Equivalent circuits and circuit elements
- > Connection laws

Why use equivalent circuits?

- > One modeling approach
 - Use circuits for electrical domain
 - » Solve via KCL, KVL
 - Use mechanical lumped elements in mechanical domain
 - » Solve via Newton's laws
 - Connect two using ODEs or matrices or other representation

> Our approach

- Lumped elements have electrical equivalents
- Can hook them together such that solving circuit intrinsically solves Newton's laws (or continuity relationships)
- Now we have ONE representation for many different domains
- VERY POWERFUL

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Onward to equivalent circuits

- > Each lumped element has one or more ports
- > Each port is associated with two variables
 - A "through" variable
 - An "across" variable
- > Power <u>into</u> the port is defined by the product of these two variables

Onward to equivalent circuits

In electrical circuits, voltage is physically "across" and current is physically "through"

voltage \rightarrow across

current → through

> What happens when we *translate* mechanics into equivalent circuits?

force \rightarrow across (V)
velocity \rightarrow through (I)force \rightarrow through (I)velocity \rightarrow through (I)ORvelocity \rightarrow across (V)

> Why does this matter?

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

What circuit element is the spring?

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Which is correct?

- > Both are correct
- > And both are used \rightarrow beware!
- > Velocity → voltage
 - "Indirect" or "mobility" analogy
 - Cleaner match between physical system and circuit
 - » Velocity is naturally "across" (e.g., relative) variable
 - But stores mechanical PE in inductors, KE in capacitors
 - Springs → Inductors

> Force \rightarrow voltage

 "Direct" analogy 	This is
 Always store PE in capacitors 	what we
 Springs → Capacitors 	will use
Circuit topologies are dual of e	ach other

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- > We want a consistent modeling approach across different domains
- > Can we generalize what we just did? » YES

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Generalized variables

Mechanical General > Formalize "terminal" relations $v = \frac{dx}{dt}$ $f = \frac{dq}{dt}$ Displacement q(t) $q = q_o + \int_0^t f dt$ $x = x_o + \int_0^t v dt$ > Flow f(t): the derivative of displacement > Effort e(t) $e = \frac{dp}{dt}$ $F = \frac{dp}{dt}$ > Momentum p(t): the integral of effort $p = p_o + \int_0^t F dt$ $p = p_o + \int_0^t e dt$ Net power into device is > effort times flow $P_{not} = e \cdot f$

Examples

> Effort-flow relations occur in MANY different energy domains

General	Electrical	Mechanical	Fluidic	Thermal
Effort (e)	Voltage, V	Force, F	Pressure, P	Temp. diff., ∆T
Flow (f)	Current, I	Velocity, v	Vol. flow rate, Q	Heat flow
Displacement (q)	Charge, Q	Displacement, x	Volume, V	Heat, Q
Momentum (p)	-	Momentum, p	Pressure Momentum, Γ	-
Resistance	Resistor, R	Damper, b	Fluidic resistance, R	Thermal resistance, R
Capacitance	Capacitor, C	Spring, k	Fluid capacitance, C	Heat capacity, mcp
Inertance	Inductor, L	Mass, m	Inertance, M	-
Node law	KCL	Continuity of space	Mass conservation	Heat energy conservation
Mesh law	KVL	Newton's 2 nd law	Pressure is relative	Temperature is relative

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- > Thermal convention: T becomes the across variable (voltage) and heat-flow becomes the through variable (current)
 - Conserved quantity is heat energy

Building equivalent circuits

- > Need power sources
- > Passive elements

> Topology and connection rules

• Figure out how to put things together

> What do we get?

- An intuitive representation of the relevant physics
- Ability to model many domains in one representation
- Access to extremely mature circuit analysis techniques and software

One-port source elements

- > Effort source and flow source
- > Effort source establishes a time-dependent effort independent of flow
 - Electrical voltage source
 - Pressure source
- > Flow source establishes a time-dependent flow independent of effort
 - Electrical current source
 - Syringe pump

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

One-port circuit elements

- > Three general passive elements
- > Represent different functional relationships
 - Energy storage, dissipation

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Analogies between mechanics and electronics

- > Electrical Domain
 - A resistor

- > Mechanical Domain
 - A damper (dashpot)

- > There is again a correspondence between
 - V and F
 - I and v > Electrical Power = VI
 - Q and x
- > Mechanical Power = Fv
- *R* and *b*

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Generalized resistor

- > For the resistor,
 - *e* is an algebraic function of *f* (or vice versa)
 - Can be a nonlinear function

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Analogies between mechanics and electronics

- > Electrical Domain
 - A capacitor

> Mechanical Domain

A spring

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

> For a generalized capacitance, the effort *e* is a function of the generalized displacement *q*.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

> Capacitors store potential energy → How much?
 > Leads to concept of energy and co-energy

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

> A linear parallel-plate capacitor

> It's energy and co-energy are numerically equal

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Analogies between mechanics and electronics

- > Electrical Domain
 - An inductor

- > Mechanical Domain
 - A mass

$$V = L\frac{dI}{dt} = L\frac{d^2Q}{dt^2} \quad \boxed{L=m} \quad F = ma = m\frac{dv}{dt} = m\frac{d^2x}{dt^2}$$

- > There is a correspondence between
 - V and F
 - I and v > Electrical Power = VI
 - *Q* and *x*
- > Mechanical Power = Fv
- *L* and *m*

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- For a generalized inertance, flow *f* is a function of momentum *p*.
- > This once again leads to concepts of energy and coenergy

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Outline

- > Context and motivation
- > Lumped-element modeling
- > Equivalent circuits and circuit elements
- > Connection laws

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- > Elements that share flow (e.g., current) and displacement (e.g., charge) are placed in series in an electric circuit
- > Elements that share a common effort (e.g., Voltage) are placed in parallel in an electric circuit

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Solving circuit solves the physics

> Apply force balance to spring-mass-damper system

> Solving KVL gives same result as Newton's laws!

> Can also do this with complex impedances

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Generating equivalent circuits

- > Possible to go "directly"
 - But hard with e→V analogy
 - See slide at end and text for details
- > Easier to do via circuit duals
- > Use convenience of $f \rightarrow V$ convention, then switch to $e \rightarrow V$
 - Force is current source
 - Each displacement variable is a node
 - Masses connected between nodes and ground
 - Other elements connected as shown in diagram

Example

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

> A 2nd-order system is a 2nd-order system

> Analogies between RLC and SMD system

$$\omega_n = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mathbf{m}/\mathbf{k}}} = \sqrt{\frac{\mathbf{k}}{\mathbf{m}}}$$

> Use what you already know to understand the intricacies of what you don't know

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- > Where is coupling between domains?
- > How does voltage \rightarrow deflection?
- > We need transducers → two-port elements that store energy
- > We will do this next time...

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

- > Can model complicated systems with lumped elements
- > Lumped elements from different domains have equivalent-circuit representations
- > These representations are not unique
 - We use the e → V convention in assigning voltage to the effort variable
- > Once we have circuits, we have access to POWERFUL analysis tools

For more info

> Course text chapter 5

> H.A.C. Tilmans. "Equivalent circuit representation of electromechanical transducers"

- Part I: lumped elements: *J. Micromech. Microeng.* 6:157, 1996.
- Part II: distributed systems: *J. Micromech. Microeng.* 7:285, 1997.
- Errata: *J. Micromech. Microeng.* 6:359, 1996.
- > R. A. Johnson. *Mechanical filters in electronics*
- > Woodson and Melcher. *Electromechanical Dynamics*
- > M. Rossi. Acoustics and electroacoustics
- > Lots and lots of papers

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Finding equivalent circuit: direct approach

> Find e→V equivalent circuit of following

> Note:

- k₂ and m₂ share same displacement, caused by F
- b₁, and k₁ share same displacement, x₂ – x₁
- If k₁→∞, m₂ and m₁ share same displacement

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].