Lumped-element Modeling with Equivalent Circuits

Joel Voldman

Massachusetts Institute of Technology

Outline

> Context and motivation

> Lumped-element modeling

$>$ Equivalent circuits and circuit elements
> Connection laws

Context

$>$ Where are we?

- We have just learned how to make structures
- About the properties of the constituent materials
- And about elements in two domains
» structures and electronics
$>$ Now we are going to learn about modeling
- Modeling for arbitrary energy domains
- How to exchange energy between domains
» Especially electrical and mechanical
- How to model dynamics
$>$ After, we start to learn about the rest of the domains

Inertial MEMS

> Analog Devices Accelerometer

- ADXL150
- Acceleration \rightarrow Changes gap \rightarrow capacitance \rightarrow electrical output

[^0] OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

RF MEMS

Use electrical signal to create mechanical motion

$>$ Series RF Switch (Northeastern \& ADI)
 - Cantilever closes circuit when actuated \rightarrow relay

Abstract

Image removed due to copyright restrictions. Image removed due to copyright restrictions. Figure 11 on p. 342 in: Zavracky, P. M., N. E. McGruer, R. H. Morrison, and D. Potter. "Microswitches and Microrelays with a View Toward Microwave Applications." International Journal of RF and Microwave Computer-Aided Engineering 9, no. 4 (1999): 338-347.

Imageby MIT OpenCourseWare.
Adapted from Rebeiz, Gabriel MRF MEMS: Theory, Design, and Technology. Hoboken, NJ: John Wiley, 2003. ISBN: 9780471201694.
Zavracky et al., Int. J. RF Microwave CAE, 9:338, 1999, via Rebeiz RF MEMS

What we'd like to do

> These systems are complicated 3D geometries

$>$ Transform electrical energy $\leftarrow \rightarrow$ mechanical energy
> How do we design such structures?

- Multiphysics FEM
» Solve constitutive equations at each node
» Tedious but potentially most accurate
$>$ Is there an easier way?
Distorted switch (Coventor)
- That will capture dimensional dependencies?
- Allow for quick iterative design?
- Maybe get us within $\mathbf{1 0 - 2 0 \%}$?

RF MEMS Switch

> What we'd really like to know

- What voltage will close the switch?
- What voltage will open the switch (when closed)?
- How fast will this happen?
- What are the tradeoffs between these variables?
" Actuation voltage vs. maximum switching frequency
> So let's restrict ourselves to relations between voltage and tip deflection
- Hah! - we have "lumped" our system

Outline

> Context and motivation

> Lumped-element modeling

$>$ Equivalent circuits and circuit elements
> Connection laws

Lumped-element modeling

$>$ What is a lumped element?

- A discrete object that can exchange energy with other objects
- An object whose internal physics can be combined into terminal relations
- Whose size is smaller than wavelength of the appropriate signal
» Signals do not take time to propagate

Lumped elements

Electrical capacitor

$>$ Spring
$>$ Rigid mass

- Push on it and it moves
- Relation between force and displacement
> Fluidic channel
- Apply pressure and fluid flows instantaneously
- Relation between pressure and volumetric flow rate

Pros/cons of lumped elements

$>$ Pros

- Simplified representations that carry dimensional dependencies
- Can do equivalent circuits
- Static and dynamic analyses
$>$ Cons
- Lose information
» Deflection along length of cantilever
- Will not get things completely right
» Capacitance due to fringing fields

So how do we go about lumping?

> First, we need input/output relations

- This requires solving physics
- This is what we do in the individual domains
» We have already done this in electrical and mechanical domains
> For cantilever RF switch
- What is relation between force and tip deflection?
- Not voltage and deflection
> Different energy domains

RF Switch mechanical model

$>$ We have seen that there is a linear relation between force and tip deflection

- Cantilever behaves as linear spring k
- CAVEAT: \boldsymbol{k} is specific for this problem
- Different k 's for same cantilever but
» Distributed force applied over whole cantilever

$$
F=\mathbf{k} x
$$

» Point force applied at end
» Deflection of cantilever middle is needed
» Etc.
> Lesson: Don't just use equation out of a book

RF Switch mechanical model

$>$ What else is needed for model?
$>$ Inertia of cantilever \rightarrow Lumped mass
$>$ Energy loss \rightarrow Lumped dashpot

- Due to air damping

How do we connect these together?

> Intuition and physics

> Example: cantilever switch

- Tip movement (x) stretches spring
- And causes damping
- Tip has mass associated with it
- All elements have same displacement

Outline

> Context and motivation

> Lumped-element modeling

$>$ Equivalent circuits and circuit elements
> Connection laws

Why use equivalent circuits?

> One modeling approach

- Use circuits for electrical domain
» Solve via KCL, KVL
- Use mechanical lumped elements in mechanical domain
» Solve via Newton's laws
- Connect two using ODEs or matrices or other representation
$>$ Our approach
- Lumped elements have electrical equivalents
- Can hook them together such that solving circuit intrinsically solves Newton's laws (or continuity relationships)
- Now we have ONE representation for many different domains
- VERY POWERFUL

Onward to equivalent circuits

$>$ Each lumped element has one or more ports
$>$ Each port is associated with
two variables

- A "through" variable
- An "across" variable

> Power into the port is defined by the product of these two variables

Onward to equivalent circuits

> In electrical circuits, voltage is physically "across" and current is physically "through"

voltage \rightarrow across
current \rightarrow through

> What happens when we translate mechanics into equivalent circuits?

```
force }->\mathrm{ across (V) OR force }->\mathrm{ through (I)
velocity }->\mathrm{ through (I)
\[
\text { velocity } \rightarrow \text { across (V) }
\]
```

> Why does this matter?

What circuit element is the spring?

$>$ It stores elastic energy

$>$ Is it a capacitor or an inductor?

Which is correct?

$>$ Both are correct
$>$ And both are used \rightarrow beware!
$>$ Velocity \rightarrow voltage

- "Indirect" or "mobility" analogy
- Cleaner match between physical system and circuit
» Velocity is naturally "across" (e.g., relative) variable
- But stores mechanical PE in inductors, KE in capacitors
- Springs \rightarrow Inductors

$>$ Force \rightarrow voltage

- "Direct" analogy
- Always store PE in capacitors
- Springs \rightarrow Capacitors

This is

what we
will use
$>$ Circuit topologies are dual of each other

Generalized variables

$>$ We want a consistent modeling approach across different domains
> Can we generalize what we just did?
» YES

Generalized variables

> Formalize "terminal" relations
$>$ Displacement $q(t)$
$>$ Flow $f(t)$: the derivative of displacement
$>$ Effort $e(t)$
$>$ Momentum $p(t)$: the integral of effort
$>$ Net power into device is effort times flow

General

$$
f=\frac{d q}{d t}
$$

$$
q=q_{o}+\int_{0}^{t} f d t
$$

$$
\begin{gathered}
e=\frac{d p}{d t} \\
p=p_{o}+\int_{0}^{t} e d t
\end{gathered}
$$

Mechanical

$$
v=\frac{d x}{d t}
$$

$$
x=x_{o}+\int_{0}^{t} v d t
$$

$$
F=\frac{d p}{d t}
$$

$$
p=p_{o}+\int_{0}^{t} F d t
$$

$$
P_{\text {net }}=e \cdot f
$$

Examples

> Effort-flow relations occur in MANY different energy domains

General	Electrical	Mechanical	Fluidic	Thermal
Effort (e)	Voltage, V	Force, F	Pressure, P	Temp. diff., ΔT
Flow (f)	Current, I	Velocity, v	Vol. flow rate, Q	Heat flow
Displacement (q)	Charge, Q	Displacement, x	Volume, V	Heat, Q
Momentum (p)	-	Momentum, p	Pressure Momentum, Γ	-
Resistance	Resistor, R	Damper, b	Fluidic resistance, R	Thermal resistance, R
Capacitance	Capacitor, C	Spring, k	Fluid capacitance, C	Heat capacity, mcp
Inertance	Inductor, L	Mass, m	Inertance, M	-
Node law	KCL	Continuity of space	Mass conservation	Heat energy conservation
Mesh law	KVL	Newton's $2^{\text {nd }}$ law	Pressure is relative	Temperature is relative

[^1] OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Other conventions

> Thermal convention: T becomes the across variable (voltage) and heat-flow becomes the through variable (current)

- Conserved quantity is heat energy

Building equivalent circuits

$>$ Need power sources

Passive elements
> Topology and connection rules

- Figure out how to put things together
$>$ What do we get?
- An intuitive representation of the relevant physics
- Ability to model many domains in one representation
- Access to extremely mature circuit analysis techniques and software

One-port source elements

$>$ Effort source and flow source
> Effort source establishes a time-dependent effort independent of flow

- Electrical voltage source
- Pressure source

Flow source establishes a time-dependent flow independent of effort

- Electrical current source
- Syringe pump

effort source

One-port circuit elements

> Three general passive elements

> Represent different functional relationships

- Energy storage, dissipation

Relates e \& f
Directly relates $e \& f$

Relates e \& q Differentiates e Integrates f

Analogies between mechanics and electronics

> Electrical Domain

- A resistor

R

$+\quad V$

> Mechanical Domain

- A damper (dashpot)

$$
F=b v=b \frac{d x}{d t}
$$

$>$ There is again a correspondence between

- V and F
- I and $v>$ Electrical Power $=V I$
- \boldsymbol{Q} and $\boldsymbol{x} \quad>$ Mechanical Power $=F v$
- R and b

Generalized resistor

$>$ For the resistor,

- e is an algebraic function of f (or vice versa)
- Can be a nonlinear function

Analogies between mechanics and electronics

$>$ Electrical Domain

- A capacitor

$$
Q=C V
$$

$$
I=C \frac{d V}{d t}
$$

$>$ Mechanical Domain

- A spring

$$
C=\frac{1}{k}
$$

$$
x=1 / k F
$$

$$
\frac{d x}{d t}=\dot{x}=1 / k \frac{d F}{d t}
$$

$>$ There is again a correspondence between

- V and F
- I and $v>$ Electrical Power $=V I$
- Q and x

$$
>\text { Mechanical Power }=F v
$$

- R and b

Generalized capacitance

$>$ For a generalized capacitance, the effort e is a function of the generalized displacement q.

Generalized capacitance

$>$ Capacitors store potential energy \rightarrow How much?

$>$ Leads to concept of energy and co-energy

Parallel-plate capacitor

> A linear parallel-plate capacitor

> It's energy and co-energy are numerically equal

$$
\begin{gathered}
C=\frac{\varepsilon A}{g} \\
V=\Phi(Q)=Q / C \\
W(Q)=\int_{0}^{Q_{1}} \Phi(Q) d Q=\int_{0}^{Q_{1}} Q / C d Q \\
W(Q)=\frac{Q^{2}}{2 C}
\end{gathered}
$$

Analogies between mechanics and electronics

$>$ Electrical Domain

- An inductor
$\begin{array}{cc}I & L \\ + & V\end{array}$

$$
V=L \frac{d I}{d t}=L \frac{d^{2} Q}{d t^{2}} \quad L=m \quad F=m a=m \frac{d v}{d t}=m \frac{d^{2} x}{d t^{2}}
$$

$>$ There is a correspondence between

- V and F
- I and $v>$ Electrical Power $=V I$
- \boldsymbol{Q} and $\boldsymbol{x} \quad>$ Mechanical Power $=F v$
- L and m

Generalized Inertance

$>$ For a generalized inertance, flow \boldsymbol{f} is a function of momentum p.
$>$ This once again leads to concepts of energy and coenergy

$$
\begin{gathered}
W\left(p_{1}\right)=\int_{0}^{p_{1}} f d p \\
W^{*}\left(f_{1}\right)=\int_{0}^{f_{1}} p d f \\
W\left(p_{1}\right)+W^{*}\left(f_{1}\right)=f_{1} p_{1} \\
\Downarrow \\
W^{*}\left(f_{1}\right)=f_{1} p_{1}-W\left(p_{1}\right)
\end{gathered}
$$

Outline

> Context and motivation

> Lumped-element modeling

$>$ Equivalent circuits and circuit elements
> Connection laws

Circuits in the $\mathrm{e} \rightarrow \mathrm{V}$ convention

$>$ Elements that share flow (e.g., current) and displacement (e.g., charge) are placed in series in an electric circuit
$>$ Elements that share a common effort (e.g., Voltage) are placed in parallel in an electric circuit

Spring-mass-dashpot system

Equivalent circuit

Solving circuit solves the physics

> Apply force balance to spring-mass-damper system

> Solving KVL gives same result as Newton's laws!

$$
\begin{aligned}
& F-F_{k}-F_{m}-F_{b}=0 \\
& F_{k}=k x, F_{b}=b \dot{x}, F_{m}=m \ddot{x} \\
& F=k x+b \dot{x}+m \ddot{x}
\end{aligned}
$$

> Can also do this with complex impedances

Generating equivalent circuits

$>$ Possible to go "directly"

- But hard with $\mathrm{e} \rightarrow \mathrm{V}$ analogy
- See slide at end and text for details
$>$ Easier to do via circuit duals
$>$ Use convenience of $f \rightarrow V$ convention, then switch to $e \rightarrow V$
- Force is current source
- Each displacement variable is a node
- Masses connected between nodes and ground
- Other elements connected as shown in diagram

Example

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Where does this leave us?

$>$ A $2^{\text {nd }}-$ order system is a $2^{\text {nd }}$-order system
> Analogies between RLC and SMD system

$$
\omega_{n}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mathbf{m} 1 / \mathbf{k}}}=\sqrt{\frac{\mathbf{k}}{\mathbf{m}}}
$$

$>$ Use what you already know to understand the intricacies of what you don't know

Energy coupling

$>$ Where is coupling between domains?
$>$ How does voltage \rightarrow deflection?
$>$ We need transducers \rightarrow two-port elements that store energy
$>$ We will do this next time...

Conclusion

> Can model complicated systems with lumped elements
$>$ Lumped elements from different domains have equivalent-circuit representations
$>$ These representations are not unique

- We use the $\mathrm{e} \rightarrow \mathrm{V}$ convention in assigning voltage to the effort variable
> Once we have circuits, we have access to POWERFUL analysis tools

For more info

$>$ Course text chapter 5
$>$ H.A.C. Tilmans. "Equivalent circuit representation of electromechanical transducers"

- Part I: lumped elements: J. Micromech. Microeng. 6:157, 1996.
- Part II: distributed systems: J. Micromech. Microeng. 7:285, 1997.
- Errata: J. Micromech. Microeng. 6:359, 1996.
$>$ R. A. Johnson. Mechanical filters in electronics
> Woodson and Melcher. Electromechanical Dynamics
> M. Rossi. Acoustics and electroacoustics
$>$ Lots and lots of papers

Finding equivalent circuit: direct approach
$>$ Find $\mathrm{e} \rightarrow \mathrm{V}$ equivalent circuit of following
$>$ Note:

- k_{2} and m_{2} share same
 displacement, caused by F
- b_{1}, and k_{1} share same displacement, $\mathrm{x}_{2}-\mathrm{x}_{1}$
- If $k_{1} \rightarrow \infty, m_{2}$ and m_{1} share same displacement

[^0]: Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT

[^1]: Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT

