Lumped-Element System Dynamics

Joel Voldman*

Massachusetts Institute of Technology
*(with thanks to SDS)

Outline

Our progress so far

$>$ Formulating state equations
$>$ Quasistatic analysis
$>$ Large-signal analysis
> Small-signal analysis
> Addendum: Review of $\mathbf{2}^{\text {nd }}$-order system dynamics

Our progress so far...

$>$ Our goal has been to model multi-domain systems
$>$ We first learned to create lumped models for each domain
> Then we figured out how to move energy between domains
> Now we want to see how the multi-domain system behaves over time (or frequency)

Our progress so far.

> The Northeastern/ADI RF Switch

We first lumped the mechanical domain

Images removed due to copyright restrictions.
Figure 11 on p. 342 in: Zavracky, P. M., N. E. McGruer, R. H. Morrison, and D. Potter. "Microswitches and Microrelays with a View Toward Microwave Applications." International Journal of RF and Microwave Comput-Aided Engineering 9, no. 4 (1999): 338-347.

Image by MIT OpenCourseWare. Adapted from Figure 6.9 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 138. ISBN: 9780792372462.

Image by MIT OpenCourseWare. Adapted from Rebeiz, Gabriel M. RF MEMS: Theory, Design, and Technology. Hoboken, NJ: John Wiley, 2003. ISBN: 9780471201694.

Our progress so far...

> Then we introduced a two-port capacitor to convert energy between domains

- Capacitor because it stores potential energy
- Two ports because there are two ways to store energy
» Mechanical: Move plates (with charge on plates)
» Electrical: Add charge (with plates apart)
- The system is conservative: system energy only depends on state variables

$$
\begin{equation*}
W(Q, g)=\frac{Q^{2} g}{2 \varepsilon A} \tag{m}
\end{equation*}
$$

Our progress so far...

> We first analyzed system quasistatically
> Saw that there is VERY different behavior depending on whether

- Charge is controlled
\rightarrow stable behavior at all gaps
- Voltage is controlled
\rightarrow pull-in at $\mathbf{g}=2 / 3 \mathrm{~g}_{0}$
$>$ Use of energy or co-energy depends on what is controlled
- Simplifies math

$$
\begin{gathered}
F=\left.\frac{\partial W(Q, g)}{\partial g}\right|_{Q}=\frac{Q^{2}}{2 \varepsilon A} \\
V=\left.\frac{\partial W(Q, g)}{\partial Q}\right|_{g}=\frac{Q g}{\varepsilon A} \\
d W=V d Q+F d g
\end{gathered}
$$

$$
\begin{gathered}
d W^{*}=Q d V-F d g \\
Q=\left.\frac{\partial W^{*}}{\partial V}\right|_{g}=\frac{\varepsilon A}{g} V_{i n} \\
F=\left.\frac{\partial W^{*}}{\partial g}\right|_{V}=\frac{\varepsilon A V_{i n}^{2}}{2 g^{2}}
\end{gathered}
$$

Today's goal

$>$ How to move from quasi-static to dynamic analysis
> Specific questions:

- How fast will RF switch close?

General questions:

- How do we model the dynamics of non-linear systems?
- How are mechanical dynamics affected by electrical domain?
$>$ What are the different ways to get from model to answer?

Outline

Our progress so far

> Formulating state equations
$>$ Quasistatic analysis
$>$ Large-signal analysis
> Small-signal analysis
> Addendum: Review of $\mathbf{2}^{\text {nd }}$-order system dynamics

Adding dynamics

> Add components to complete the system:

- Source resistor for the voltage source
- Inertial mass, dashpot
$>$ This is now our RF switch!
> System is nonlinear, so we can't use Laplace to get transfer functions
> Instead, model with state equations

Image by MIT OpenCourseWare.
Adapted from Figure 6.9 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 138. ISBN: 9780792372462.

Electrical domain Mechanical domain

State Equations

> Dynamic equations for general system (linear or nonlinear) can be formulated by solving equivalent circuit
> In general, there is one state variable for each independent energy-storage element (port)
$>$ Good choices for state variables: the charge on a capacitor (displacement) and the current in an inductor (momentum)

Goal:
$\frac{d}{d t}\left[\begin{array}{l}Q \\ g \\ \dot{g}\end{array}\right]=\binom{$ functions of }{Q, g, \dot{g} or constants }
> For electrostatic transducer, need three state variables

- Two for transducer (Q, g)
- One for mass (dg/dt)

Formulating state equations

$>$ Start with Q

$>$ We know that $d Q / d t=I$
Find relation between I and state variables and constants

$$
\begin{gathered}
\mathrm{KVL}: V_{i n}-e_{R}-V=0 \\
\frac{d Q}{d t}=I=\frac{1}{R}\left(V_{i n}-V\right) \\
\frac{d Q}{d t}=\frac{1}{R}\left(V_{i n}-\frac{Q g}{\varepsilon A}\right) \\
V=\frac{Q g}{\varepsilon A}
\end{gathered}
$$

Formulating state equations

> Now we'll do

KVL:
$F-e_{k}-e_{m}-e_{b}=0$
$F-k z-m \ddot{z}-b \dot{z}=0$

$$
e_{k}=k z
$$

$$
e_{m}=m \ddot{z}
$$

$$
e_{b}=b \dot{z}
$$

$$
z=g_{0}-g \Rightarrow \dot{z}=-\dot{g}, \ddot{z}=-\ddot{g}
$$

$$
\begin{aligned}
& F-k\left(g_{0}-g\right)+m \ddot{g}+b \dot{g}=0 \\
& \ddot{g}=-\frac{1}{m}\left[F-k\left(g_{0}-g\right)+b \dot{g}\right] \\
& \frac{d \dot{g}}{d t}=-\frac{1}{m}\left[\frac{Q^{2}}{2 \varepsilon A}-k\left(g_{0}-g\right)+b \dot{g}\right]
\end{aligned}
$$

Formulating state equations

$>$ State equation for g is easy:

$$
\frac{d g}{d t}=\dot{g}
$$

> Collect all three nonlinear state equations

$$
\frac{d}{d t}\left[\begin{array}{c}
Q \\
g \\
\dot{g}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{R}\left(V_{i n}-\frac{Q g}{\varepsilon A}\right) \\
\dot{g} \\
-\frac{1}{m}\left[\frac{Q^{2}}{2 \varepsilon A}-k\left(g_{0}-g\right)+b \dot{g}\right]
\end{array}\right]
$$

$>$ Now we are ready to simulate dynamics

Outline

Our progress so far

$>$ Formulating state equations
> Quasistatic analysis
$>$ Large-signal analysis
> Small-signal analysis
> Addendum: Review of $\mathbf{2}^{\text {nd }}$-order system dynamics

Quasistatic analysis

Equivalent circuit

State equations

For transverse
electrostatic actuator:

State variables

Outputs

Inputs: $\mathbf{u}=\left[V_{i n}\right]$

$$
f(\mathbf{x}, \mathbf{u})=\left[\begin{array}{l}
\frac{1}{R}\left(V_{\text {in }}-\frac{Q g}{\varepsilon A}\right) \\
\dot{g} \\
-\frac{1}{m}\left[\frac{Q^{2}}{2 \varepsilon A}-k\left(g_{0}-g\right)+b \dot{g}\right]
\end{array}\right]
$$

Outputs: $\mathbf{y}=[\dot{g}]=g(\mathbf{x}, \mathbf{u})$

Fixed points

$>$ Definition of a fixed point

- Solution of $f(x, u)=0$
- time derivatives $\rightarrow 0$
$>$ Global fixed point
- A fixed point when $\mathbf{u}=0$
- Systems can have multiple global fixed points
- Some might be stable, others unstable (consider a pendulum)
$>$ Operating point
- Fixed point when u is a non-zero constant

Fixed points of the electrostatic actuator

> This analysis is analogous to what we did last time...

$$
\begin{gathered}
0=\frac{1}{R}\left(V_{i n}-\frac{Q g}{\varepsilon A}\right) \\
0=\dot{g} \\
0=-\frac{1}{m}\left[\frac{Q^{2}}{2 \varepsilon A}-k\left(g_{0}-g\right)+b \dot{g}\right] \\
V_{i n}=\frac{Q g}{\varepsilon A} \\
\frac{Q^{2}}{2 \varepsilon A}=\frac{V_{\text {in }}{ }^{2} \varepsilon A}{2 g^{2}}=k\left(g_{0}-g\right)
\end{gathered}
$$

Last time...

$$
g=g_{0}-\frac{\varepsilon A V_{i n}^{2}}{2 \mathrm{~kg}^{2}}
$$

Outline

Our progress so far

$>$ Formulating state equations
$>$ Quasistatic analysis
> Large-signal analysis
> Small-signal analysis
> Addendum: Review of $\mathbf{2}^{\text {nd }}$-order system dynamics

Large-signal analysis

Equivalent circuit

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw. mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Direct Integration

$>$ This is a brute force approach: integrate the state equations

- Via MATLAB ${ }^{\circledR}$ (ODExx)
- Via Simulink ${ }^{\circledR}$
$>$ We show the SIMULINK ${ }^{\circledR}$ version here
- Matlab ${ }^{\circledR}$ version later

Electrostatic actuator in Simulink ${ }^{\circledR}$

$\mathbf{x}=\left[\begin{array}{c}Q \\ g \\ \dot{g}\end{array}\right], \mathbf{u}=\left[V_{\text {in }}\right]$
$\mathbf{f}(\mathbf{x}, \mathbf{u})=\left[\begin{array}{l}\frac{1}{R}\left(V_{i n}-\frac{Q g}{\varepsilon A}\right) \\ \dot{g} \\ -\frac{1}{m}\left[\frac{Q^{2}}{2 \varepsilon A}-k\left(g_{0}-g\right)+b \dot{g}\right]\end{array}\right]$

Image by MIT OpenCourseWare.
Adapted from Figure 7.8 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 174. ISBN: 9780792372462.

Electrostatic actuator with contact

Image by MIT OpenCourseWare.
Adapted from Figure 7.9 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 175. ISBN: 9780792372462.

Behavior through pull-in

Image by MIT OpenCourseWare.
Adapted from Figure 7.10 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 176. ISBN: 9780792372462.

Behavior through pull-in

Image by MIT OpenCourseWare.
Adapted from Figure 7.11 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 177. ISBN: 9780792372462.

Outline

Our progress so far

$>$ Formulating state equations
$>$ Quasistatic analysis
$>$ Large-signal analysis
> Small-signal analysis
> Addendum: Review of $\mathbf{2}^{\text {nd }}$-order system dynamics

Small-signal analysis

Small-signal analysis

Linearization about a fixed point

> This is EXTREMELY common in MEMS literature

$>$ This is also done in many other fields, with different names

- Small-signal analysis
- Incremental analysis
- Etc.

Linearization About an Operating Point

> Using Taylor's theorem, a system can

$$
\dot{\mathbf{x}}=f(\mathbf{x}, \mathbf{u})
$$ be linearized about any fixed point

$>$ We can do this in one dimension or many

$$
\begin{aligned}
\mathbf{x}(t)= & \mathbf{X}_{0}+\delta \mathbf{x}(t) \\
\mathbf{u}(t)= & \underbrace{}_{0}+\delta \mathbf{u}(t) \\
& \text { Operating point }
\end{aligned}
$$

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Linearization About an Operating Point

> The resulting set of equations are linear, and have dynamics described by the Jacobians of $f(x, u)$ evaluted at the fixed point.
> These describe how much a small change in one state variable affects itself or
 electrostatic actuator

$$
\begin{aligned}
& \delta \dot{\mathbf{x}}(\mathbf{t})=\mathbf{J}_{1} \delta \mathbf{x}+\mathbf{J}_{\mathbf{2}} \delta \mathbf{u}(\mathbf{t}) \\
& \mathbf{J}_{1}=\left[\begin{array}{lll}
\left.\frac{\partial f_{1}}{\partial Q}\right|_{\text {O.P. }} & \left.\frac{\partial f_{1}}{\partial g}\right|_{\text {O.P. }} & \left.\frac{\partial f_{1}}{\partial \dot{g}}\right|_{\text {O.P. }} \\
\left.\frac{\partial f_{2}}{\partial Q}\right|_{\text {O.P. }} & \left.\frac{\partial f_{2}}{\partial g}\right|_{\text {O.P. }} & \left.\frac{\partial f_{2}}{\partial \dot{g}}\right|_{\text {O.P. }} \\
\left.\frac{\partial f_{3}}{\partial Q}\right|_{\text {O.P. }} & \left.\frac{\partial f_{3}}{\partial g}\right|_{\text {O.P. }} & \left.\frac{\partial f_{3}}{\partial \dot{g}}\right|_{\text {OP. }}
\end{array}\right] \\
& \frac{d}{d t}\left(\begin{array}{l}
\delta Q \\
\delta g \\
\delta \dot{g}
\end{array}\right)=\left(\begin{array}{ccc}
-\frac{\hat{g}_{0}}{R \varepsilon A} & -\frac{Q_{0}}{R \varepsilon A} & 0 \\
0 & 0 & 1 \\
-\frac{Q_{0}}{m \varepsilon A} & -\frac{k}{m} & -\frac{b}{m} \\
\mathbf{J}_{\mathbf{1}} &
\end{array}\right)\left(\begin{array}{c}
\delta Q \\
\delta g \\
\delta \dot{g}
\end{array}\right)+\left(\begin{array}{l}
\frac{1}{R} \\
0 \\
0
\end{array}\right)\left(\delta V_{i n}\right)
\end{aligned}
$$

State Equations for Linear Systems

$>$ Normally expressed with:

- x : a vector of state variables
- u: a vector of inputs

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

- Four matrices, A,B,C, D
- y : a vector of outputs
$>$ For us, Jacobian matrices take the place of A and B
$>C$ and D depend on what outputs are desired
- Often C is identity and D is zero
$>$ Can use to simulate time responses to arbitrary SMALL inputs
- Remember, this is only valid for small deviations from O.P.

Direct Integration in Time

> Can integrate via Simulink ${ }^{\circledR}$ model (as before) or MATLAB ${ }^{\circledR}$

First define system in MATLAB ${ }^{\circledR}$

- using ss(J1, J2,C,D) or alternate method
$>$ Can use MATLAB ${ }^{\circledR}$ commands step, initial, impulse etc.
> Response of electrostatic actuator to impulse of voltage
- Parameters from text (pg 167)

[^0]
Small-signal analysis

Solve via Laplace transform

> Use Laplace Transforms to solve in frequency domain

- Transform DE to algebraic equations
- Use unilateral Laplace to allow for non-zero IC's

$$
\begin{gathered}
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u} \\
\Downarrow \text { Unilateral Laplace } \\
s \mathbf{X}(s)-\mathbf{x}(0)=\mathbf{A X}(s)+\mathbf{B U}(s) \\
s \mathbf{I}(s)-\mathbf{x}(0)=\mathbf{A X}(s)+\mathbf{B U}(s) \\
(s \mathbf{s}-\mathbf{A}) \mathbf{X}(s)=\mathbf{X}(0)+\mathbf{B U}(s)
\end{gathered}
$$

Transfer Functions

> Transfer functions H(s) are useful for obtaining compact expression of input-output relation

- What is the tip displacement as a function of voltage
> Most easily obtained from equivalent circuit
$>$ But can also be obtained from linearized state eqns
- Depends on A, B, C (or $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{C}$) matrices
- Can do this for fun analytically (see attachment at end)
- Matlab can automatically convert from s.s to t.f. formulations
> For our actuator, we would get three transfer functions

$$
\mathbf{H}(s)=\left[\begin{array}{l}
\frac{\mathrm{Q}(\mathrm{~s})}{} \\
\hline \mathbf{V}_{\text {in }}(s) \\
\underline{g(s)} \\
\hline \mathbf{V}_{\text {in }}(s) \\
\frac{\dot{\mathbf{g}}(\mathrm{s})}{\mathbf{V}_{\text {in }}(s)}
\end{array}\right]
$$

Sinusoidal Steady State

> When a LTI system is driven with a sinusoid, the steady-state response is a sinusoid at the same frequency
$>$ The amplitude of the response is $|\mathrm{H}(\mathrm{j} \omega)|$

$$
y_{s s s}(t)=Y_{0} \cos (\omega t+\theta)
$$

$>$ The phase of the response relative to the drive is the angle of $\mathrm{H}(\mathrm{j} \omega$)
$>$ A plot of log magnitude vs log frequency and angle vs log frequency is called

$$
\begin{aligned}
Y_{0} & =|H(j \omega)| U_{0} \\
\tan \theta & =\frac{\operatorname{Im}\{H(j \omega)\}}{\operatorname{Re}\{H(j \omega)\}}
\end{aligned}
$$ a Bode plot

Bode plot of electrostatic actuator

$>$ Use Matlab ${ }^{\circledR}$ command bode with previously defined system sys

Evaluate only one of TFs

Small-signal analysis

Poles and Zeros

$>$ For our models, system function is a ratio of polynomials in s
$>$ Roots of denominator are called poles

- They describe the natural (unforced) response of the system
$>$ Roots of the numerator are called zeros
- They describe particular frequencies that fail to excite any output
$>$ System functions with the same poles and zeros have the same dynamics

$$
\begin{gathered}
\mathbf{H}(s)=\frac{\mathbf{g}(s)}{\mathbf{V}_{\text {in }}(s)}=\frac{\frac{-Q_{0}}{\varepsilon A R m}}{s^{3}+\left(\frac{1}{R C_{0}}+\frac{b}{m}\right) s^{2}+\left(\frac{1}{R C_{0}} \frac{b}{m}+\frac{k}{m}\right) s+\left(\frac{1}{R C_{0}} \frac{k}{m}-\frac{Q_{0}^{2}}{\varepsilon^{2} A^{2}} \frac{1}{R m}\right)} \\
\text { where } C_{0}=\frac{\varepsilon A}{\hat{g}_{0}}
\end{gathered}
$$

$>$ MATLAB solution for poles is VERY long

Pole-zero diagram

Displays information about dynamics of system function

- Matlab command pzmap
> Useful for examining dynamics, stability, etc.

Small-signal analysis

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw. mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Eigenfunction Analysis

$>$ For an LTI system, we can find the eigenvalues and eigenvectors of the J_{1} (or A) matrix describing the internal dynamics

For scalar $1^{\text {st-order }}$ system:

$$
\frac{d x}{d t}=\lambda x \quad \Rightarrow x(t)=K_{0} e^{\lambda t}+K_{1}
$$

Our linear (or linearized) homogeneous systems look like:

$$
\begin{array}{cc}
\delta \dot{\mathbf{x}}(\mathbf{t})=\mathbf{J}_{1} \delta \mathbf{x}+\mathbf{J}_{2} \delta \mathbf{u}(\mathbf{t}) \\
\frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x} & \frac{d(\delta \mathbf{x})}{d t}=\mathbf{J}_{1} \delta \mathbf{x}
\end{array}
$$

If we try solution:

$$
\mathbf{x}(t)=\mathbf{K} e^{\lambda t}
$$

Plug into DE:

$$
\lambda \mathbf{x}=\mathbf{A} \mathbf{x}
$$

-This is an eigenvalue equation
-If we find λ we can find natural frequencies of system

Eigenfunction Analysis

$>$ These λ are the same as the poles s_{i} of the system
> Can solve analytically

- Find λ from $\operatorname{det}(A-\lambda I)=0$
> Or numerically eig(sys)
-8.9904
$-0.2627+0.8455 i$
-0.2627-0.8455i

Linearized system poles

$>$ We can use either λ_{i} or s_{i} to determine natural frequencies of system
> As we increase applied voltage

- Stable damped resonant frequency decreases
> Plotting poles as system changes is a root-locus plot

Spring softening

> Plot damped resonant frequency versus applied voltage
$>$ Resonant frequency is changing because net spring constant k changes with frequency
$>$ This is an electrically tuned mechanical resonator

$$
k^{\prime}=k-\frac{\varepsilon A V^{2}}{g^{3}}
$$

This is called spring softening

Image by MIT OpenCourseWare.
Adapted from Figure 7.5 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 169. ISBN: 9780792372462.

Small-signal analysis

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw. mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Linearized Transducers

> Can we directly linearize our equivalent circuit? YES!
$>$ This is perhaps the most common analysis in the literature

First, choose what is load and what is transducer

- Here we include spring with transducer

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw. mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Linearized Transducer Model

First, find O.P.

$$
V_{0}, \hat{g}_{0}, Q_{0}
$$

> Next, generate matrix to relate incremental port variables to each other

- Start from energy and force relations

$$
\begin{aligned}
V & =\frac{Q g}{\varepsilon A} \\
F_{\text {out }} & =\frac{Q^{2}}{2 \varepsilon A}-k\left(g_{0}-g\right)
\end{aligned}
$$

- Linearize (take partials...)

$$
\left[\begin{array}{l}
\delta V \\
\delta F_{\text {out }}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\hat{g}_{0}}{\varepsilon A} & \frac{Q_{0}}{\varepsilon A} \\
\frac{Q_{0}}{\varepsilon A} & k
\end{array}\right]\left[\begin{array}{l}
\delta Q \\
\delta g
\end{array}\right]
$$

$>$ Recast in terms of port variables

$$
\left[\begin{array}{l}
\delta Q \\
\delta g
\end{array}\right]=\left[\begin{array}{c}
\delta I / \mathrm{s} \\
\delta U / \mathrm{s}
\end{array}\right]
$$

$>$ Define intermediate variables

$$
C_{0}=\frac{\varepsilon A}{\hat{g}_{0}}, V_{0}=\frac{Q_{0}}{C_{0}}
$$

> Final expression

$$
\left[\begin{array}{l}
\delta V \\
\delta F_{\text {out }}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{s C_{0}} & \frac{V_{0}}{s \hat{g}_{0}} \\
\frac{V_{0}}{s \hat{g}_{0}} & \frac{k}{s}
\end{array}\right]\left[\begin{array}{l}
\delta I \\
\delta U
\end{array}\right]
$$

Linearized Transducers

$>$ Now we want to convert this relation into a circuit
$>$ Many circuit topologies are consistent with this matrix relation
> THIS IS NOT UNIQUE!

Image by MIT OpenCourseWare.
Adapted from Figure 5 on p. 163 in Tilmans, Harrie A. C. "Equivalent Circuit Representations of Electromechanical
Transducers: I. Lumped-parameter Systems." Journal of Micromechanics and Microengineering 6, no. 1 (1996): 157-176.

[^1]JV: 6.777J/2.372J Spring 2007, Lecture 10-50

Linearized Transducers

$>$ This is the one used in the text

$$
\begin{aligned}
{\left[\begin{array}{c}
\delta V \\
\delta F_{\text {out }}
\end{array}\right] } & =\left[\begin{array}{cc}
Z_{E B} & \varphi Z_{E B} \\
\varphi Z_{E B} & Z_{M O}
\end{array}\right]\left[\begin{array}{c}
\delta I \\
\delta U
\end{array}\right] \\
Z_{M S} & =Z_{M O}\left(1-\frac{\varphi^{2} Z_{E B}}{Z_{M O}}\right)
\end{aligned}
$$

> Uses a transformer

- Transforms port variables
- Doesn't store energy
> What we want to do now is identify $\mathrm{Z}_{\text {EB }}, \mathrm{Z}_{\mathrm{MS}}$ and φ, and figure out what they mean...

Linearized Transducers

$$
\begin{aligned}
& {\left[\begin{array}{c}
\delta V \\
\delta F_{\text {out }}
\end{array}\right]=\left[\begin{array}{cc}
Z_{E B} & \varphi Z_{\text {dB }} \\
\varphi Z_{E B} & Z_{\text {MO }}
\end{array}\right]\left[\begin{array}{c}
\delta I \\
\delta U
\end{array}\right]} \\
& Z_{\text {MS }}=Z_{\text {MO }}\left(1-\frac{\varphi^{2} Z_{\text {dB }}}{Z_{\text {MO }}}\right) \\
& {\left[\begin{array}{l}
\delta V \\
\delta F
\end{array}\right]=\left[\begin{array}{lc}
\frac{1}{s C_{0}} & \frac{V_{0}}{s \hat{g}_{0}} \\
\frac{V_{0}}{s \hat{g}_{0}} & \frac{k}{s}
\end{array}\right]\left[\begin{array}{l}
\delta I \\
\delta U
\end{array}\right]} \\
& Z_{M S}=\frac{k}{s}\left(1-\left(\frac{Q_{0}}{\hat{g}_{0}}\right)^{2} \frac{1 / s C_{0}}{k / s}\right)=\frac{k}{s}\left(1-\left(\frac{Q_{0}}{\hat{g}_{0}}\right)^{2} \frac{1}{C_{0} k}\right) \\
& =\frac{k}{s}\left(1-\frac{Q_{0}^{2}}{\varepsilon A k \hat{g}_{0}}\right) \square k^{\prime}=k-\frac{Q_{0}^{2}}{\varepsilon A \hat{g}_{0}}
\end{aligned}
$$

Linearized Transducers

$>C_{0}$ represents the capacitance of the structure seen from the electrical port

$>$ It is simply the capacitance at the gap given by the operating point

$$
C_{0}=\frac{\varepsilon A}{\hat{g}_{0}}
$$

$>$ As $\mathrm{V}_{\text {in }}$ increases, C_{0} will increase until the structure pulls in
$>$ This is a tunable capacitor

Linearized Transducers

$>k^{\prime}$ represents the effective spring
> A combination of the mechanical spring k and the electrical spring

$>$ This is an electrically tunable spring!

$$
k^{\prime}=k-\frac{Q_{0}^{2}}{\varepsilon A \hat{g}_{0}}
$$

- Spring softening shows up in k^{\prime}
$>$ As $\mathrm{V}_{\text {in }}$ increases, \boldsymbol{k}^{\prime} will decrease from k (at $V_{\text {in }}=0$) to 0 (at $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{pi}}$)

Linearized Transducers

$>\varphi$ represents the electromechanical coupling
> Represents how much the capacitance changes with gap
> A measure of sensitivity

$$
\varphi=\frac{C_{0} V_{0}}{\hat{g}_{0}}=\frac{Q_{0}}{\hat{g}_{0}}
$$

$$
\begin{aligned}
\varphi & =-\left.V_{0} \frac{\partial C}{\partial g}\right|_{o . p .}=-\left.V_{0} \frac{\partial}{\partial g} \frac{\varepsilon A}{g}\right|_{o p .} \\
& =V_{0} \frac{\varepsilon A}{\hat{g}_{0}^{2}} \\
& =\frac{C_{0} V_{0}}{\hat{g}_{0}}
\end{aligned}
$$

Transfer Functions

> Can use linearized circuit to construct $\mathrm{H}(\mathrm{s})$ using complex impedances
> Usually helpful to
 "eliminate" transformer
> Transformer changes impedances

$$
Z_{2}=Z_{1} / \varphi^{2}
$$

Can now get any transfer function using standard circuit analysis

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw. mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Linearized Transducer Models

> Now we can understand Nguyen's filter!

Image removed due to copyright restrictions.
Figure 9 on p. 17 in Nguyen, C. T.-C. "Vibrating RF MEMS
Overview: Applications to Wireless Communications."
Proceedings of SPIE Int Soc Opt Eng 5715 (January 2005): 11-25.

Image removed due to copyright restrictions.
Figure 12 on p. 62 in: Nguyen, C. T.-C. "Micromechanical
Filters for Miniaturized Low-power Communications."
Proceedings of SPIE Int Soc Opt Eng 3673 (July 1999): 55-66.

Small-signal analysis summary

Conclusions

> We can now analyze and design both quasistatic and dynamic behavior of our multi-domain MEMS
$>$ We have much more powerful tools to analyze linear systems than nonlinear systems
$>$ But most systems we encounter are nonlinear
$>$ Linearization permits the study of small-signal inputs
$>$ Next up: special topics in structures, heat transfer, fluids

Review: analysis of a $2^{\text {nd }}-$ order linear system

> Spring-mass-dashpot

$$
\left[\begin{array}{l}
\frac{d}{d t}\left[\begin{array}{l}
x \\
\dot{x}
\end{array}\right]=\left[\begin{array}{l}
\dot{x} \\
1 / m(F-k x-b \dot{x})
\end{array}\right] \\
\text { State } \quad \square \\
\text { eqns }
\end{array} \begin{array}{l}
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
\mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{array}\right.
$$

Direct Integration in Time

> Example: Spring-mass-dashpot step response

- $k=m=1 ; b=0.5$;

Transfer Functions

Can get TFs from A, B, C matrices

$$
\begin{gathered}
\mathbf{Y}(s)=\mathbf{C X}(s)+\mathbf{D U}(s) \\
\mathbf{Y}(s)=\mathbf{C}\left[(s \mathbf{s}-\mathbf{A})^{-1} \mathbf{x}(0)+(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B U}(s)\right]+\mathbf{D U}(s) \\
\| \begin{array}{l}
\text { Assume transient has died out }\left(\mathbf{X}_{\mathbf{z I R}}=\mathbf{0}\right) \\
\text { No feed-through }(\mathbf{D}=\mathbf{0})
\end{array} \\
\mathbf{Y}(s)=\left[\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}\right] \mathbf{U}(s) \\
\mathbf{Y}(s)=\mathbf{H}(s) \mathbf{U}(s)
\end{gathered}
$$

$$
\mathbf{H}(s)=\left[\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}\right]
$$

Transfer Functions

> Let's do analytically \& via MATLAB

$$
\begin{gathered}
s \mathbf{I}-\mathbf{A}=\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-k / m & -b / m
\end{array}\right] \\
=\left[\begin{array}{cc}
s & -1 \\
k / m & s+b / m
\end{array}\right] \\
(s \mathbf{I}-\mathbf{A})^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
s+b / m & 1 \\
-k / m & s
\end{array}\right] \\
\begin{array}{c}
\Delta=s(s+b / m)+k / m=s^{2}+s b / m+k / m \\
\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}
\end{array}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
s+b / m & 1 \\
-k / m & s
\end{array}\right]\left[\begin{array}{l}
0 \\
1 / m
\end{array}\right] \\
=\frac{1}{\Delta}\left[\begin{array}{l}
1 / m \\
s / m
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{H}(s)=\left[\begin{array}{l}
\frac{X(s)}{\mathrm{F}(s)} \\
\frac{\dot{X}(s)}{\mathrm{F}(s)}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{m s^{2}+s b+k} \\
\frac{s}{m s^{2}+s b+k}
\end{array}\right] \\
\mathbf{H}(s)=\left[\begin{array}{cc}
\frac{1}{s^{2}+0.5 s+1} \\
\frac{s}{s^{2}+0.5 s+1}
\end{array}\right] \\
\gg\left[\begin{array}{lll}
\mathrm{n}, \mathrm{~d}]=\mathrm{ss2tf}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \\
\mathrm{n}= & \mathrm{s}^{2} & \mathrm{~s}^{1} \\
0 & -0.0000 & 1.0000 \\
0 & 1.0000 & -0.0000
\end{array}\right. \\
\mathbf{d}=\begin{array}{lll}
1.0000 & 0.5000 & 1.0000
\end{array}
\end{gathered}
$$

Transfer Functions

Can also construct H(s) directly using complex impedances and circuit model

$$
\begin{aligned}
& F-e_{k}-e_{m}-e_{b}=0 \\
& e_{k}=\mathrm{k} x=\frac{\mathrm{k}}{s} \dot{x} \\
& e_{b}=\mathrm{b} \dot{x} \\
& e_{m}=\mathrm{m} \ddot{x}=\mathbf{m} \dot{x} \dot{x}
\end{aligned}
$$

Poles and Zeros

For $2^{\text {nd }}$-order system, easy to get poles and zeros from TFs

$$
\begin{aligned}
& \mathbf{H}(s)=\frac{1}{m}\left[\begin{array}{l}
\frac{1}{s^{2}+s b / m+k / m} \\
\frac{s}{s^{2}+s b / m+k / m}
\end{array}\right] \\
&=\frac{1}{m}\left[\frac{1}{\left(s-s_{1}\right)\left(s-s_{2}\right)}\right] \\
&\left.\frac{s}{\left(s-s_{1}\right)\left(s-s_{2}\right)}\right]
\end{aligned}
$$

where
$\mathrm{s}_{1,2}=-\frac{b}{2 m} \pm \sqrt{\left(\frac{b}{2 m}\right)^{2}-\frac{k}{m}}$
these are the poles

Spring-mass-dashpot system

> It is a second order system, with two poles

$$
s^{2}+b / m s+k / m=s^{2}+2 \alpha s+\omega_{0}^{2}
$$

> We conventionally define

- Undamped resonant frequency

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

- Damping constant
$\rightarrow \alpha=\frac{b}{2 m}$
- Damped resonant frequency
- Quality factor

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}
$$

For underdamped systems $\left(\alpha<\omega_{0}\right)$

$$
s_{1,2}=-\alpha \pm j \omega_{\mathrm{d}}
$$

where

$$
\omega_{\mathrm{d}}=\sqrt{\omega_{0}^{2-} \alpha^{2}}
$$

Quality factor:

$$
Q=\frac{\omega_{0}}{2 \alpha}=\frac{m \omega_{0}}{b}
$$

Pole-zero diagram

Displays information about dynamics of system

 function$$
\begin{gathered}
\mathbf{H}_{2}(s)=\frac{s}{s^{2}+0.5 s+1} \\
s_{1,2}=-0.25 \pm j \sqrt{1-1 / 16}=-0.25 \pm j 0.97 \\
\text { Pole-Zero Map } \\
\hline 1.5 \\
\hline \text { pole }
\end{gathered}
$$

SMD-position frequency response

$$
\begin{aligned}
& \mathbf{H}(j \omega)=\frac{1}{m} \frac{1}{-\omega^{2}+2 \alpha j \omega+\omega_{0}^{2}} \\
& |\mathbf{H}(j \omega)|=\frac{1}{m} \frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \alpha^{2} \omega^{2}}}
\end{aligned}
$$

$$
\angle \mathbf{H}(j \omega)=-\operatorname{atan}\left(\frac{2 \alpha \omega}{\omega_{0}^{2}-\omega^{2}}\right)
$$

Eigenfunction Analysis

Find eigenvalues numerically using MATLAB and A matrix

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
0 & -0.5
\end{array}\right] \\
\Lambda \mathbf{V}, \Lambda]=\operatorname{eig}(\mathbf{A}) \\
\Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.25+0.97 j & 0 \\
0 & -0.25-0.97 j
\end{array}\right] \\
\mathbf{V}=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{cc}
0.707 & 0.707 \\
-0.18-0.68 j & -0.18-0.68 j
\end{array}\right]
\end{gathered}
$$

[^0]: Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

[^1]: Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

