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Special Topics in Structures:  Residual 
Stress and Energy Methods

Carol Livermore

Massachusetts Institute of Technology

*   With thanks to Steve Senturia, from whose lecture notes some 
of these materials are adapted.
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Outline

> Effects of residual stresses on structures

> Energy methods
• Elastic energy
• Principle of virtual work:  variational methods
• Examples

> Rayleigh-Ritz methods for resonant frequencies and 
extracting lumped-element masses for structures
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Reminder:  Thin Film Stress
> If a thin film is adhered to a substrate, mismatch of thermal 

expansion coefficient between film and substrate can lead to 
stresses in the film (and, to a lesser degree, stresses in the 
substrate)

> Residual stress can also come from film structure:  intrinsic 
stress

> Stresses set up bending moments that can bend the substrate

> When we release a residually stressed MEMS structure, 
interesting effects can ensue 
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Reminder:  Differential equation of beam bending
> Small angle bending:

> Beam equation:
• q = distributed load
• w = vertical displacement
• x = axial position along beam EI

q
dx

wd
=4
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Image by MIT OpenCourseWare.
Adapted from Figure 9.11 in: Senturia, Stephen D. Microsystem 
Design. Boston, MA: Kluwer Academic Publishers, 2001, pp. 214. 
ISBN: 9780792372462.
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Example:  Fixed-fixed beam
> Fixed-fixed beams are common in MEMS:  switches, diffraction 

gratings, flexures

> Example:  Silicon Light Machines Grating Light Valve display 
deflects a beam in order to diffract light

> Residual stress in beams can enhance or reduce response to an 
applied load, and impact flatness of actuated beam

> Residual stress can be included in the basic beam bending 
equation by the addition of an extra term

Image removed due to copyright restrictions.

Please see: Figure 1.4 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 7. ISBN: 9780792372462.
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Residual Axial Stress in Beams
> Residual axial stress in a beam 

contributes to its bending stiffness
> Leads to the Euler beam equation
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Adapted from Figure 9.16 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 228. ISBN: 9780792372462.

Adapted from Figure 9.15 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 227. ISBN: 9780792372462.
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Example: Effect of tensile stress on stiffness

100 μm long, 2 μm wide, 2 μm high fixed-fixed silicon beam
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Adapted from Figure 9.17 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 232. ISBN: 9780792372462.

Image by MIT OpenCourseWare.
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Stress impacts flatness:  leveraged bending
> Pull-in is modified if the actuating electrodes are away from the 

point of closest approach

1)

2)

3)

with stress-
stiffening

Figure 3 on p. 499 in: Hung, E. S., and S. D. Senturia. "Extending the Travel Range of Analog-tuned Electrostatic Actuators."
Journal of Microelectromechanical Systems 8, no. 4 (December 1999): 497-505. © 1999 IEEE.
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Buckling of Axially Loaded Beams
> If the compressive stress is too large, a beam will spontaneously 

bend – this is called buckling

> The basic theory of buckling is in Sec. 9.6.3

> The Euler buckling criterion:
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Plates with in-plane stress and membranes
> As with the Euler beam equation, in plane stress can be included

> When tensile stress dominates over flexural rigidity (thin, 
tensioned plate), the plate may be considered a membrane
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How about cantilevers?
> Example:  residually stressed cantilever, where stress is 

constant throughout structure

> Before release:  stressed cantilever is attached to surface

> After release:  cantilever relieves stress by expanding or 
contracting to its desired length

> No bending of released structure
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How about nonuniform axial stress?
> Nonuniform axial stress through the thickness of a beam creates 

a bending moment

> It can arise from two sources
• Intrinsic stress gradients, created during formation of the 

cantilever material (e.g. polysilicon)
• Residual stress in thin films deposited onto the cantilever

> The bending moment curls the cantilever
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Example:  Cantilever with stress gradient
> Think about it in three steps:

• Relax the average stress to zero after release
• Compute the moment when the beam is flat
• Compute the curvature that results from the moment
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Adapted from Figure 9.13 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic
Publishers, 2001, p. 223. ISBN: 9780792372462.

Image by MIT OpenCourseWare.
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Example: Thin Film on Cantilever
> In this case, the curling does not relieve all the stress

> See text for math Barbastathis group, MIT
Courtesy of George Barbastathis. Used with permission.
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Adapted from Figure 9.14 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 224. ISBN: 9780792372462.
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Outline

> Effects of residual stresses on structures

> Energy methods
• Elastic energy
• Principle of virtual work:  variational methods
• Examples

> Rayleigh-Ritz methods for resonant frequencies and 
extracting lumped-element masses for structures
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Elastic Energy
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> Elastic stored energy density is the integral of stress with 
respect to strain 

> The total elastic stored energy is the volume integral of the 
elastic energy density
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Including Shear Strains
> More generally, the energy density in a linear elastic medium is

related to the product of stress and strain

> A similar approach can be used for electrostatic stored energy 
density (1/2)D*E and magnetostatic stored energy density 
(1/2)B*H.
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Concept:  Principle of Virtual Work
> The question:  how to determine the deformation that results 

from an applied load

> Known:  the work done on an energy-conserving system by 
external forces must result in an equal amount of stored 
potential energy

> Imposing this condition can provide an exact solution to many 
problems

• For example, if functional dependence between quantities is 
known, and you just need to find what the actual values are

F

δ
δ(F) = ??
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Concept:  Principle of Virtual Work

> Can approach this from a “guessing” point of view
• Guess values for δ; whichever one best equates stored 

energy and work done is the right answer 

> What if you don’t know the functional form of your 
deformations/displacements – does this still work?

> Yes!  You can choose a plausible shape function for the 
displacement with a few adjustable parameters and iteratively 
“guess” the constants to best equate stored energy and work 
done

Stored energy -
work done

Deformation δ

x
xx x x

x   are guesses
x is best guess
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Principle of Virtual Work

> Goal:  a variational method for solving energy-conserving 
problems (a mathematical way of approaching the “guessing”)

> Define total potential U, including work and stored energy

> A system in equilibrium has a total potential U that is a minimum 
with respect to any virtual displacement

• No matter what you change, you won’t get any closer to 
matching work and stored energy

> Requirement:  the virtual displacement must obey B.C.

> Nomenclature for small virtual displacements
• In the x direction:  δu
• In the y direction:  δv
• In the z direction:  δw

done Work -energy  Stored  =U
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Math:  Principle of Virtual Work
> Consider all possible virtual displacements; evaluate change in 

strains

> This implies changes in strain energy density

> The principle of virtual work states that in equilibrium, for any 
virtual displacement that is compatible with the B.C.,
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Differential Version
> The previous equation is equivalent to the following:
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Variational methods
> Select a trial solution with parameters that can be varied

• û(x, y, z; c1, c2,…cn) = trial displacement in x
• v(x, y, z; c1, c2,…cn) = trial displacement in y 
• ŵ(x, y, z; c1, c2,…cn) = trial displacement in z

> Formulate the total potential U of the system as functions of 
these parameters

> Find the potential minimum with respect to the values of the 
parameters

> The result is the best solution possible with the assumed trial 
function
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Why Bother?
> Nonlinear partial differential equations are basically very nasty.

> Approximate analytical solutions can always be found with 
variational methods

> The analytical solutions have the correct dependence on 
geometry and material properties, hence, serve as the basis for 
good macro-models

> Accurate numerical answers may require finite-element 
modeling
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Analytic vs. Numerical
> Analytic variational methods and numerical finite-element 

methods both depend on the Principal of Virtual Work

> Both methods minimize total potential energy

> FEM methods use local trial functions (one per element).  
Variational parameters are the nodal displacements

> Analytic methods use global trial functions
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Outline

> Effects of residual stresses on structures

> Energy methods
• Elastic energy
• Principle of virtual work:  variational methods
• Examples

> Rayleigh-Ritz methods for resonant frequencies and 
extracting lumped-element masses for structures
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Example:  fixed-fixed beam, small deflections
> Doubly-fixed beam with a point load at some position along the 

beam, in the small deflection limit

> Our present choice:  use a fourth degree polynomial trial 
solution

> Apply boundary conditions:  
• c0 = c1 = 0 from BC at x = 0
• BC at x = L eliminate two more constants
• Result is a shape function with one undetermined amplitude 

parameter
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Example:  fixed-fixed beam, small deflections
> Formulate total potential energy and find the minimum

> Calculate strain energy from bending

> Calculate work done by external force applied at x0

> This yields total potential energy
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Example: fixed-fixed beam, small deflections
> Minimize total potential energy with respect to c4, determine c4, 

and plug in to find variational solution for deflection w(x)

> Compare stiffness for the case of a center-applied load

( )( )
F

LEWH
xLxxLxLxxL

w

F
LEWH

xLxxLc

c
U

53

43224
0

3
0

2
0

2

53

4
0

3
0

2
0

2

4

4

22
15

215

0

+−+−
=

+−
=

=
∂
∂

( )

3

3

3

3

3

3

17
15
256

256
15

2

L
EWH

L
EWHk

F
EWH

LLw

≈=

=

3

3

16

equation beam ofsolution  Recall

L
EWHk =



Cite as: Carol Livermore, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

C. Livermore:  6.777J/2.372J Spring 2007, Lecture 11 - 30

Properties of the Variational Solution
> Does it solve the beam equation?   NO

> Is the point of maximum deflection near where the 
load is applied? NOT IN GENERAL

> How can we determine how accurate the solution is?  
TRY A BETTER FUNCTION

> Was this a good trial function? NO
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A Better Trial Function
> Fifth-order polynomial allows both the amplitude and shape of 

the deformation to be varied
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Adapted from Figure 10.1 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 248. 
ISBN: 9780792372462.

Image by MIT OpenCourseWare.

The artist's representation of the fourth and fifth degree polynomials is approximate.
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What about large deflections?
> For small deflections, pure bending is a good approximation

• The geometrically constructed neutral axis really does have 
about zero strain

> For large deflections, the beam gets longer
• Tensile side gets even more tensile
• Compressed side gets less compressed
• Neutral axis becomes tensile

> We can treat this as a superposition of two events
• First, the beam bends in pure bending, which draws the end 

of the beam away from the second support
• Then, the beam is stretched to reconnect with the second 

support
• Quantify the stretching by the strain at the originally neutral 

axis
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Analysis of “Large” Deflections
> When deflections are “large,” on the order of the beam 

thickness, stretching becomes important
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Example:  Center-Loaded Beam
> Potential energy has three terms:

• Bending strain energy
• Stretching strain energy
• External work

> Bending and external work already calculated for one trial 
function

> Pick another trial function (same weakness as last attempt, but 
easy to use) and include large deflections
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Example:  Center-Loaded Beam
> First, calculate the strain due to stretching (aggregate axial 

strain)

> Total strain = bending strain + aggregate axial strain
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Example:  Center-Loaded Beam
> Calculate total stored elastic energy from total strain

> Finally, potential energy…

> …which we minimize with respect to c

> Compare linear term with solution to beam equation:  prefactor
16.2 instead of 16
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Results from example
> Force-displacement relationship:  an amplitude-stiffened Duffing

spring

> Solution shows geometry dependence; constants may or may 
not be correct

> Once you’ve found the elastic strain energy, finding results for 
another load is easy
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Example:  uniform pressure load P
> Adopt the elastic strain energy

> Calculate the work for a uniform pressure load

> Minimize U to find relationship between load and deflection

> The geometry dependence appears!
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Combining Variational and FEM Methods
> Use the analytic variational method to find a good functional 

form for the result

> Establish non-dimensional numerical parameters within the 
solution

> Perform well-meshed FEM simulations over the design space

> Fit the analytic solution to the FEM results
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Residual Stress In Clamped Structures
> Must add a new term to the elastic energy to capture the effects

of the residual stress

> Now there is a residual stress term in the stored elastic energy

> For the fixed-fixed beam example, the residual stress term is:

> This leads to a general form of the load-deflection relationship 
for beams, which can be extended to plates and membranes
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Results for Doubly-Clamped Beam

2

2

0

3
44

3

2
0

3
4

4

4

34

2
02

3
3

4

3

34
0

2

 whenbendingover  dominates  termstress  that thenote  weFinally,

:is results, FEM  tofittingfor  useful loading, pressurefor  form general The

43

:case loaded pressure for the and

862

:loadpoint centrala ofcaseFor the

L
EH

c
L

EHCc
L

EHC
L
HCP

c
L

EHc
L

EH
L
HP

c
L

EWHc
L

EWH
L
WHF

sbr

≥

⎥⎦
⎤

⎢⎣
⎡+

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎥⎦

⎤
⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

σ

σ

ππσπ

ππσπ



Cite as: Carol Livermore, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

C. Livermore:  6.777J/2.372J Spring 2007, Lecture 11 - 42

Outline

> Effects of residual stresses on structures

> Energy methods
• Elastic energy
• Principle of virtual work:  variational methods
• Examples

> Rayleigh-Ritz methods for resonant frequencies and 
extracting lumped-element masses for structures
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Estimating Resonance Frequencies

> We have achieved part of our goal of converting structures into 
lumped elements

• We can calculate elastic stiffness of almost any structure, for 
small and large deflections

• But we still don’t know how to find the mass term associated 
with structures

> We can get the mass term from the resonance frequency and the 
stiffness

> The resonance frequency comes from Rayleigh-Ritz analysis
• In simple harmonic motion at resonance, the maximum kinetic 

energy equals the maximum potential energy
• Determine kinetic energy; equate its maximum value to the 

maximum potential energy; find ω0.
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Estimating Resonance Frequencies

> Guess a time dependent trial function from ŵ(x)

> Find maximum kinetic energy from maximum velocity

> Calculate maximum potential energy from ŵ(x) as before 

)cos()(ˆ),(ˆ txwtxw ω=

( )

( ) ( )

( ) ( ) dxdydzxwx

xwx

mv

xw
t

txw

mk

mk

k

t

∫∫∫=

=

=

−=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

beam volume

2
2

max,

22
max,

2
maxmax,

2

ˆ
2

   :energy kineticMax 

                              ˆ
2
1~

   :densityenergy  kineticMax 

                                             
2
1   :lumped energy, kineticMax 

                 ˆ),(ˆ
   : velocityMaximum

ρω

ωρ

ω
ωπ

W

W

W



Cite as: Carol Livermore, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

C. Livermore:  6.777J/2.372J Spring 2007, Lecture 11 - 45

Rayleigh-Ritz
> The resonance frequency is obtained from the ratio of 

potential energy to kinetic energy, using a variational
trial function

> The result is remarkably insensitive to the specific 
trial function
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Example:  Tensioned Beam
> Compare two trial solutions:

• Tensioned wire – the exact solution (1/2 λ of a cosine)
• Bent beam – a very poor solution 

> Resonant frequencies differ by only 15%

> Worse trial functions yield higher stiffness, higher resonant 
frequencies

0.00

0.02

0.04

-0.5 -0.25 0.25 0.50

0.06

0.08

0.10

0.12

0.14

x/L

D
ef

le
ct

io
n Bending solution

Tensioned wire

Adapted from Figure 10.3 in Senturia, Stephen D. Microsystem Design. Boston,
MA: Kluwer Academic Publishers, 2001, p. 263. ISBN: 9780792372462.
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Extracting Lumped Masses
> Use variational methods to calculate the stiffness 

> Use Rayleigh-Ritz with the same trial function to calculate 
the resonant frequency ω2

> Extract the mass from the relation between mass, stiffness, 
and resonant frequency.

• ω2 = k/m
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