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Determining Factors that Significantly Impact 

Injury Levels in a Production Facility


T. S. Welton, Semiconductor Manufacturing 6.780 

Abstract—Over an eight-month period in 2002, an analysis was 
performed at Michael D Computer Corporation, to determine 
how different factors within the production environment at the 
largest production facility, TMC - such as headcount levels, work 
day, work times, overtime amounts, and percent of temporary 
employees - impacted productivity.   Using a linear regression 
model, a prediction equation was created to predict the output in 
the factory given the above listed factors.  While the work was 
informative, and productivity could be modeled, these factors also 
impact other non-productivity outcomes, such as product quality 
defect levels, as well as the number of injuries seen on the factory 
floor.  While the initial publication included models and results 
that could be used to predict the number of quality defects using 
the factors listed above, determining the number of injuries was 
not determined at that time.  This is because modeling of injuries 
in the factory is much more complex because it relies on the use of 
more complex non-linear regression techniques.  This paper uses 
the production information from the TMC factory, and 
determines which factors are important in predicting the number 
of injuries that will exist in the factory by using an advance non
linear regression methodology, known as the Poisson Loss 
Function. Through the use of this technique, it could be 
determined, that the major contributors to Injuries in the factory, 
were the Total Headcount in the factory, the Percentage of 
Temporary Headcount utilized in the factory, the Shift being 
worked, and the Day of the Week being worked. 

I. INTRODUCTION 

Between the months of June and December of 2002, a study 
was completed at Michael D Computer Corporation on 

the impact of factors such as headcount levels, work day, work 
times, overtime amounts, and percentage of temporary 
employees on the floor productivity in the company’s largest 
production facility, TMC.  While the study was primarily 
intended for use by the staffing department to help determine 
appropriate headcounts needed in each of the production areas 
of the factory, all of the factors listed above were pertinent to 
determining output in the factory.  For this reason, a 
multivariate regression model was created, and a prediction 
equation that could be used to accurately predict the output of 
the factory was found.   

While this study focused mainly on the impact of adding 
headcount to the factory productivity, there were other 
outcomes that could be influenced by changing these factors as 

well.  These non-production factors include quality defects of 
the products being built and the injury rates of the employees 
working in the factory.  It was believed that while productivity 
was the main consideration when determining headcount 
levels, these other non-production outcomes (as well as some 
others not mentioned) should be addressed as well.  While the 
original publication included analysis on quality defect rates, 
predicting injury rates in the factory was left unsolved. This is 
because predicting injuries in the factory is fairly complex. 

The reason for the complexity is due to the nature of the 
injury data itself.  The output of the factory was between zero 
and 18,000 units each shift.  That spread was wide enough that 
it could be considered a continuous Normal distribution. 
Likewise, the number of defects found at the factory each day 
could range between zero and 700 units daily.  This spread, 
too, is considered wide enough that the output could be 
considered a continuous Normal distribution as well.  Because 
of this, traditional linear regression analysis could be done to 
determine the factory output and the number of quality defects 
found in the factory each shift.   

However, determining the number of injuries that will be 
seen in a factory is not as straight forward.  Over the timeframe 
of the study, the number of Injuries and Near Misses (referred 
to as injuries in this document) was not a normal distribution 
but a Poisson distribution, or a distribution that is described by 
integer values greater than zero, with possible values of zero, 
one, two, or three.  Because of this, a special non-linear 
regression model is needed to model this prediction equation, 
called a Poisson Loss Function.  This article walks through the 
Poisson Loss Function methodology used to determine the 
significant factors that impact the number of injuries in the 
factory. 
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II. ANALYSIS OF THE INDIVIDUAL DATA 
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In order to determine which factors are important in 
determining the number of injuries in the factory, data from 
one quarter (three months) for the TMC factory was gathered 
and analyzed.  First, a qualitative study was performed to look 
for trends in the injury totals expected under different 
conditions.  Different factors were individually looked at to 
determine if there were any patterns that could be seen from 
the raw data.  Some of the qualitative analysis is included in 
the following sections. 

A. Factory Output Analysis 
As mentioned, one difficulty with predicting the number of 
injuries in the factory with many of the factors listed, such as 
headcount or factory output, is that the number of injuries seen 
in the factory over the time period of the study is Poisson 
distributed with possible values of 0, 1, 2, or 3.  As continuous 
factors are compared with the actual injury rate, which is 
Poisson distributed, no clear pattern can be pulled out.  A 
scatter plot that compares the factory output with the number 
of Injuries and Near Misses seen in the factory is shown 
below. 
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Figure 2 - Injury Distribution by Shift 

From the above distribution we see that First shift has a 
higher percentage of days with zero injuries in the factory. 
Calculating the average number of injuries for each shift, we 
find that the First shift averages 0.64 injuries per day, and 
the second shift averages 0.93.  That appears to be a large 
change, however, it is unclear if that difference is a 
significant difference. 

C. Day of the Week Analysis 
The number of injuries was looked at by the day of the week, 

to see if there were noticeable trends, as was done for each 
Shift.  The following results were found. 

Figure 1 - Scatter plot comparing Factory Output with Factory 
Injuries.  Red Line: Indicates general correlation. 

As shown above, the comparison tells little about whether 
factory output is important in determining the number of 
injuries that will be seen in the factory.  The general 
correlation between the output per Shift and the number of 
Injuries or Near Misses shows that the injury rate increases as 
the output volume increases, however, it is unclear whether the 
output is significant in determining the number of injuries that 
will be seen on the production floor.   
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B. Shift Analysis 
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Initially, the average number of injuries for each shift was Total Injuries and Near Misses Total Injuries and Near Misses 

looked at to decide if there was a noticeable difference 
between them.  The following graph shows the output and 
distribution of injuries given the shift. 
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Figure 3 - Injury Distribution by Day of the Week 

Looking at the above daily injury and near miss totals we 
see that Saturday has the largest percentage of days with 
Injuries or Near Misses.  Additionally, Monday has no days 
with more than one Injury or Near Miss.  The average number 
of Injuries and Near Misses are 0.375, 0.962, 0.654, 0.958, 
0.727, and 1.667 per day for Monday, Tuesday, Wednesday, 
Thursday, Friday, and Saturday respectively.  One important 
observation is that Saturday appears to have the highest injury 
rate out of all the days worked.  Saturdays, however, are only 
worked on weeks in which an extra day of production was 
needed to keep up with the pace of demand.  If demand was 
not too high, Saturdays were not worked. 

D. Percentage of Temporary Workers Analysis 
Much like the correlation between output and the number of 

Injuries and Near Misses, the impact that the percentage of 
temporary employees on the floor has on the number of 
injuries is unclear.  As done for the output to injury trend in 
the above section, a trend was done, using a scatter plot 
between the number of temporary workers (as a percentage of 
the total number of workers) compared to the total injuries in 
the plant.  That scatter plot is shown in the Figure below. 
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What is interesting to note in the above plot is that by 
looking at this data alone, it would suggest that as the number 
of temporary workers increases, the total number of Injuries 
and Near Misses does too.  The problem with this plot, is that 
more temporary workers are generally added when higher 
production dictates the need for more workers in the factory. 
For this reason, it is unclear whether the increase in Injuries 
and Near Misses is attributable to the higher volumes of 
production or the higher number of temporary workers on the 
floor.  It may be true that one or the other of these factors is 
significant, but not both. 

III. POISSON REGRESSION 

While each factor in the above section was looked at in 
isolation, identifying trend using that data was not reliable.  A 
better model was needed to help identify which factors are 
significant in determining the Injury and Near Miss rate in the 
factory, and would account for other factors as the estimates 
are determined.  To do this, a Poisson Regression is used.   

Poisson Regression Models are generally used when the 
output data of a prediction equation is skewed, non-negative, 
and where the variance increases as the mean increases.  Each 
of these might traditionally give regular linear regression 
models trouble.  However, Poisson regression uses a log 
transformation called a Poisson Loss Function, which adjusts 
for the skewness and prevents the model from producing 
negative predicted values.  Additionally, Poisson regression 
models the variance as a function of the mean, so the variance 
should not vary greatly as the mean increases.   

As mentioned a Poisson distribution is used to model 
frequency counts, as it is in this case.  A Poisson distribution 
can be described with the following formula. 

-
(1) P(Y=k) = Exp( µ)*µ n / n! 

In the above equation, µ , can be a single value, or a linear 
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model with many factors.  To determine the Poisson Loss 
Function for our model, which is used to produce non-negative 
numbers), the log of the equation 1 is used.  This equation is 
shown below: 

(2) Ln( ) = -(N*m ode -Exp(m ode ))-
Y l l

ΓLog( (N+1)) 

In the above equation, Γ is the gamma function (Γ (n+1)=n!) 
and emodel represents µ. As mentioned above, µ  , could be a 
single value or a linear model.  For the Poisson Regression, 
this value, also called the model, is substituted with the linear 
model composed of the different factors that will be used to 
determine the number of Injuries and Near Misses in the 
factory.   Given the Poisson Regression model and loss 

Figure 4 - Scatter Plot Comparing the Temporary Worker 
Percentage and the Total Number of Injuries and Near Misses. 

Red Line: shows general trend of the correlation. 

function as described above, the model for the Injury 
prediction can be determined. 
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The following sequence was followed to run this model. 
First, the factors used to predict the Injuries and Near Misses 
were chosen. Secondly, a model was built that included the 
factors that were selected, as well as the Poisson Loss function. 
After that, the model was run and its output was analyzed. 
Within the data the significant factors were determined, and 
the prediction equation for the model was determined. The 
model as a whole could be analyzed as well for fit. Finally, 
the predicted number of Injuries and Near Misses could be 
estimated given the prediction equation.  Each of these process 
steps is discussed in detail below. 

IV. CHOOSING THE INPUT FACTORS 

To create a Poisson Regression model using the data, a list 
of possible factors that would be used to predict the number of 
Injuries and Near Misses in the factory.  Over time, the data 
fields were narrowed down considerably. A table, which 
includes each type of data as well as a description of that data 
type, is included in Table 1. 

Variable Description 
Injuries and 
Near Misses 

This variable is the target of the study. It 
is a count of the Injuries that occurred in 
the factory, as well as incidents recorded 
that could have resulted in an injury on the 
factory floor, but was avoided. This 
information is collected by shift. 

Shift This is the shift of the factory for which 
the injury data was collected. 

Total The total headcount of the TMC factory 
Headcount floor, collected by the shift. 
Hours in the This is a measure of the total number of 
Shifts hours worked in each shift. 
Total Output This measures the total output, as the 

number of units shipped from the factory, 
for each shift. 

Percent This measures the number of temporary 
Temporary 
Employees 

employees used in the factory, as a percent 
of the total workforce.  This would be used 
to measure the impact of using temporary 
employees on the number of injuries seen 
in the factory. 

Day of the This is the day of the week for the model. 
Week 

Table IV-1 - Factors used in Poisson Regression 

As mentioned, the above table includes the information that 
was included in the model to predict injuries in the factory. 
There were other combinations of data tested as well that were 
dropped. One factor was Percent Overtime, which was 
calculated by determining the number of hours of overtime as 
a percentage of total shift hours. A factor called Labor Hours 
was tested as well. This factor was calculated by multiplying 
the number of workers with the total number of hours worked 
during the shift. These, as well as statistics, such as Number 
of Units produced per person per shift, or number of units built 

per person per hour were used, but dropped from the final 
model, as they were found to not be significant. 

V. DETERMINING THE MODEL AND LOSS FUNCTION 

In order to create the Poisson Regression Model, two terms 
need to be created. First the model itself needed to be defined, 
and also the loss function must be determined. The model 
creation was a bit tricky. In this case, the data contained both 
categorical data, as well as continuous data. Categorical data 
is defined as data with a subset of choices that are possible. 
For this model, the Shift was categorical, because it contained 
only two choices for shifts, First and Second. Additionally, 
the Day of the Week was categorical as well. The set of 
possible categories for Day of the Week was Monday, 
Tuesday, Wednesday, Thursday, Friday, and Saturday. The 
Total Headcount in the factory, the number of Hours in the 
Shift, the Total Output of the shift, and the Percent Temporary 
Employees were all continuous. They could all be feasibly any 
non-negative value. With that information known, the model 
for the function could be created. The results for the model 
are shown in the figure below. 

(3) model = Intercept + MatchShift + b1*TotalHeadcount 
+ b2*HoursInShift + b3*Total Output 
+ b4*PercentTemporary + MatchDayOfWeek 

where MatchShift is defined as the function: 

Match(Shift)(“Second” -> Second =1

Else  -> 0  )


and where MatchDayOfWeek is defined as the function: 

Match(DayofWeek)(“MON” -> Monday =1, 
“TUES” ->Tuesday =1, 
“WED” -> Wednesday =1,

 “FRI”  -> Friday = 1,
 “SAT”  ->Saturday = 1, 

else  -> 0  ) 

The above model is the regression model for the Poisson 
regression. Additionally, the loss function is needed. As 
introduced in Equation 2, the Poisson Loss Function for this 
regression can be seen below: 

(4 ) Ln(Y) = -(I uresandNearM i -
nj i sses*m odel

-Ex p (m odel
))


uresandNearM i
Log(Γ(Inj i sses+1))

This loss function guarantees that the predicted number of 
Injuries and Near Misses will be a positive value. Given the 
model equation and the Poisson Loss Function as shown 
above, the Poisson regression can now be run.  The results for 
the regression model are described below. 
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VI. POISSON MODEL RESULTS 

Given the above equations, the Poisson Model was run. 
Initially, the coefficients were all set to zero, and the intercept 
was set to the value of one.  With these set, the model iterates 
though the different input values, and determines a best 
estimate for each of the coefficients and the intercept, which 
minimizes the sum of the residuals from our real results.  The 
results of the Poisson Regression model are shown below. 

Parameter 

Monday 

Tuesday 

Friday 


Saturday 

Wednesday 


Second 

Intercept


PercentTempCoeff

HrsWorkedCoeff

HeadcountCoeff


OutputCoeff


Current Value 
-0.836201584 
-0.011655563 
-0.031761855 
1.1016554812 
-0.422011496 
1.0482761722 

 -0.12456072 
 -7.710753746 

 0.0676430084 
 0.8786549113 

 -0.008296988 

SSE 87.957992518 

N 128 


Table VI-1 - Poisson Regression Model Effect Estimates 

Looking at the above output, it can be seen that there were 
128 data samples that were used to model this data.  Each Day 
has its own effect estimate, except for the default case, 
Thursday.  The effect for Thursday was equal to zero.  
Likewise, there is an effect (or parameter) estimate for the 
Second shift of 1.048.  The First shift would be considered the 
default shift, and so the First shift would have an effect 
estimate of zero.  Finally, the PercentTempCoeff was the 
effect estimate for the Percent of Workers that were 
Temporary employees, the HrsWorkedCoeff was the effect 
estimate for the Number of Hours Worked in the Shift, the 
HeadcountCoeff was the effect estimate for the Total 
Headcount, and the OutputCoeff was the effect estimate for the 
Total Output in the factory. 

In this model, counting the number of data samples and 
subtracting one for every coefficient and intercept estimate in 
the model can determine the degrees of freedom.  In this case, 
there were 128 samples, and 11 parameter estimates.  
Therefore, there are 117 degrees of freedom for this model. 
This becomes important as the model accuracy is judged. 

To judge the overall model accuracy against the actual 
values predicted, the SSE number is relied on.  The SSE is the 
Sum of Squares Estimate for the Model and is estimated to be 
the variation of the residuals of the model, or difference 
between the actual and predicted Injury and Near Misses.  In 
order to the standard deviation of the residuals, also referred to 
as the MSE or Mean Square Estimate, the Sum of Squares 
Estimate is divided by the degrees of freedom in the model.  In 
this case, the SSE is roughly equal to 87.95.  Dividing 87.95 
by 117 yields a MSE value of 0.867.  This means our 
prediction will estimate the number of injuries in the factory 
within 0.867 injuries 68 percent of the time.  While not 

completely accurate in this case, there are still some key 
learnings that we can pull from the data.   

A. Prediction Equation 
Given the above parameter estimates, a prediction 

equation can be generated to predict the output for the 
model.  To predict the output, the following equation can be 
used. 

(5) Ln(Injuries) = Intercept + ShiftCoeff  
+ HeadcountCoeff*ScaledHeadcount 
+ HrsWorkedCoeff*HoursInShift  
+ OutputCoeff*ScaledOutput 
+ PercentTemp*PercentTemporary  
+ DayOfWeekCoeff. 

In the above equation, Intercept, HeadcountCoeff, 
HrsWorkedCoeff, and OutputCoeff are given in the 
parameter estimates.  Additionally the ShiftCoeff will be set 
to zero for the First shift, and 1.05 for the Second shift.  
Finally, the DayOfWeekCoeff is zero if the day of the week 
you are modeling is Thursday, or is found by matching the 
day of the week you are modeling with the parameter of the 
same name in the Parameter list and substituting the Current 
estimate value given in Table VI – 1 for the 
DayOfWeekCoeff. For example, if the day you are modeling 
is Wednesday, the DayOfWeekCoeff will be approximately 
equal to –0.422.   

As shown through the equation, a scaled headcount and 
output level was needed to compute the model for the 
function.  This is because the Poisson loss function that uses 
the model actually is exponentially larger than the model 
itself.  If the model is calculated to be too high, the Poisson 
argument grows too quickly, and a model cannot be 
determined from the Poisson Regression.  To handle this 
problem, a scaled headcount (ScaledHeadcount) and output 
(ScaledOutput) are determined.  ScaledHeadcount is 
calculated as follows: 

(6) ScaledHeadcount = (Total Headcount – 750)/100 

Likewise, ScaledOutput is determined with the following 
equation: 

(7) ScaledOutput = (Total Output – 12000)/1000 

Using these values, the Poisson Loss function will not grow 
arbitrarily large, and a Poisson regression model can be 
calculated.Finally, by knowing the values for each of the 
factors and the coefficients the Ln(Injuries) is found.1  The 
number of Injuries or Near Misses can be determined by 

1 I am not certain of this estimate.  By looking at multiple 
sources on the web on Poisson Loss functions, I found that the 
equation was equal to: Log L(yi,Bi) = Sum{- exp(xi,Bi) + yi (xi,Bi) -
log(yii!)}.  This implied to me that the result could be found by exp(Log 
L(yi,Bi)). 
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taking the exponential of the the Ln(Injuries) estimate. Using 
this as the basis for the Poisson regression, the output can be 
estimated, and the residuals analyzed. 

B. Residual Analysis 
While the model parameter estimates have been calculated, 

the residuals need to be tested for randomness.  If the residuals 
were not random, that would suggest that a significant factor of 
the model was not accounted for and a better regression fit 
might be possible.  The following graph shows the residuals 
for the Poisson model. 
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Figure 5 - Analysis of the Residuals 

Given the above scatter plot, the residuals follow a mostly 
random pattern. There is some concern that the there are 
strong outliers on the low end of the model that are not 
explained.  Additionally, the residuals tend to fall around the 
0.5 and -0.5 values.  This might suggest that a better model 
might be possible. 

VII. DETERMINING SIGNIFICANCE OF THE COEFFICIENTS 

Given the model and loss function in Section V, the effects 
of the parameters were estimated for each of the parameters in 
the model. With those parameter estimates, a prediction 
equation was generated that was used to predict the number of 
Injuries and Near Misses that would be expected given the 
changing values of our parameters.  Using that prediction 
equation, the number of Injuries and Near Misses were 
predicted for each of the unique 128 data points was calculated 
and compared with the actual value. The residuals were 
analyzed as well. While that information is important, there is 
more information that we can obtain from this model. In 
addition to the parameter estimates, the error is measured for 
each effect as well. The following is the table of effects and 
the standard error for each parameter. 

Parameter Estimate ApproxStdErr 
Monday -0.836201584 0.4054583 
Tuesday -0.011655563 0.29151622 
Friday -0.031761855 0.34095551 

Saturday 1.1016554812 0.45949955 
Wednesday -0.422011496 0.32101172 

Second 1.0482761722 0.38531737 
Intercept -0.12456072 1.68795816 

PercentTempCoeff -7.710753746 3.65005422 
HrsWorkedCoeff 0.0676430084 0.18066858 
HeadcountCoeff 0.8786549113 0.4391271 

OutputCoeff -0.008296988 0.09658109 

Table VII-1 Parameter Estimates with Standard Error 

Knowing the standard error for each parameter helps to 
identify the effects that are significant within the model. 
Generally, speaking the standard error term is the estimate of 
the standard deviation of the error for each parameter. In 
order to determine if a parameter is significant, an alpha, α, is 
chosen. Using the alpha value, and using the standard 
deviation of the model around the parameter estimate, 
confidence limits can be established in which there is a 1- α 
certainty that the true estimate lies within the confidence 
limits. For example, if an alpha is chosen to be 0.05, the 
confidence limits will be determined to ensure that there is 
only a five percent chance that the actual estimate value will 
lie outside the confidence limits. Given the properties of 
Normal distributions, if the alpha value is set to 0.05, that is 
equivalent to saying the actual estimate lies between +/- 2 
standard deviations of the predicted estimate. 

The confidence limits, as discussed above, were calculated 
for the parameters in the Injury and Near Miss Poisson 
regression model. Their values are now shown in Table VII-2. 

Parameter Estimate ApproxStdErr Lower CL Upper CL 
Monday -0.836 0.405 -1.681 -0.072 

Tuesday -0.012 0.292 -0.584 0.566 

Friday -0.032 0.341 -0.716 0.630 

Saturday 1.102 0.459 0.152 1.967 

Wednesday -0.422 0.321 -1.066 0.202 

Second 1.048 0.385 0.299 1.812 

Intercept -0.125 1.688 -3.360 3.277 

PercentTempCoeff -7.711 3.650 -14.885 -0.542 

HrsWorkedCoeff 0.068 0.181 -0.300 0.410 

HeadcountCoeff 0.879 0.439 0.025 1.750 

OutputCoeff -0.008 0.097 -0.187 0.192 

To determine the Lower confidence limit for each of the 
parameters, the standard error was multiplied by two and 
subtracted from the estimate. Likewise, to determine the 
Upper confidence limit the standard error was multiplied by 
two and added to the effect estimate for each parameter. 
Knowing this relationship, a parameter is said to be significant 
if the zero value does not fall within the confidence limits 
established above. If the zero value actually falls within the 
confidence limits, there is a chance that the parameter actually 
has zero impact on the output determined by the model. 

To start the analysis of our effect predictions, the 
categorical variables were looked at. Looking at the Day of 
the Week parameters and estimates, it can be seen that there 
are two days that are considered significant. First, Monday is 
shown to have significantly impact on the number of Injuries 
and Near Misses.  The effect is predicted to be –0.836, and the 
confidence limits, which each sit 2 standard deviations from 
the predicted effect, are –1.681 and –0.072. Because the zero 
value does not fall between the Upper an Lower confidence 
limits, it can be said that there is greater than 95% certainty 
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that Monday produces fewer Injuries and Near Misses than 
other days.  Additionally, it can be seen above that Saturday 
has a significantly higher Injury and Near Miss rate than other 
days of the week.  The estimated effect is 1.102 extra Injuries 
or Near Misses and the confidence limits are 0.152 and 1.967 
for the lower and upper confidence limits respectively.  It can 
be said that Saturday has a significantly higher defect rates 
than other days of the week.  Of the remaining days in the 
model, none can be said to have a significant impact on the 
number of Injuries or Near Misses in the factory, because the 
zero value falls within the confidence interval for all of these 
days. 

Similar to the Days of the Week, the estimate of the effect 
for Second shift can be determined to have a significantly 
higher Injury and Near Miss rate than the First shift does.  In 
this analysis it was found that the effect estimate for the 
Second shift was 1.048, and its confidence limits were 0.299 
and 1.812 for the lower and upper limits respectively.  This 
means that Second shift has significantly higher defect rates 
than First shift does.  This might cause Michael D Computer 
Company to look for ways to make the second shift a safer 
environment to work in.  Whether by fatigue, or poor training, 
Second shift incurs higher number of injuries than the first 
shift does. 

With the analysis of the categorical data complete, similar 
analysis can be completed on the continuous estimates in the 
model.  First, it can be seen that the Number of Hours Worked 
and the Total Output level has negligible effect on the number 
of Injuries and Near Misses experienced in the factory.  Both 
of these parameters had upper and lower confidence limits that 
fall on either side of the zero value.  Looking at Total Output 
first, we see the confidence limits are –0.187 and 0.192 for the 
lower and upper limit respectively.  Likewise, the confidence 
limits for the Number of Hours Worked are –0.30 and 0.41 for 
the upper and lower confidence limit respectively.  Since the 
zero value falls within these limits for both variables, they are 
both considered to be insignificant variables. 

Looking at the Percent of Workers that are Temporary, we 
find that as the percentage grows, there is a significant drop in 
the amount of Injuries and Near Misses found on the factory 
floor.  In this case, the effect estimate is –7.71 and the 
confidence limits are –14.885 and –0.542 for the lower and 
upper limits respectively.  Because zero does not fall within 
the confidence limits, the effect is a significant effect on the 
overall Injury and Near Miss average.  If using the –7.71 
estimate, a 10% raise in the percentage of workers that are 
temporary would statistically reduce the injury total by 0.77 
injuries per shift.  Once important note is that the temporary 
workers are added to the headcount as demand dictates, and so 
the injury rate drops in conjunction with higher demand.   

Finally, the number of headcount found in the factory has a 
significant impact on injury rates as well.  The estimate for the 
headcount effect is 0.879, and the confidence limits are 0.025 
and 1.75 for the lower and upper confidence limits 
respectively.  This implies that adding headcount increases the 
amount of Injuries or Near Misses in the factory.  In this case, 
if the headcount of the factory were to raise by 100 workers 

the impact would be an Increase in Injury and Near Miss 
Incidents of 0.879 per shift. 

Given that knowledge from the last two observations, 
adding headcount in the factory increases the injury rate in the 
factory, however, if temporary headcount is added, there will 
be a corresponding drop in the injury rate as well.  Generally, 
temporary employees are added as demand volumes dictate.  
The drop in the injury rate due to the addition of the temporary 
headcount could be due to more concentration of employees 
on their work during high demand times or due to the 
temporary headcount being more attentive to their 
environment at work.  Whatever the reason, the data shows 
that the times in which the headcount has a higher percentage 
of temporary workers there is less chance for injuries in the 
factory.  Likewise, the addition of employees happens as the 
volumes increase as well.  This could be a result of workers 
getting in each other’s way or congestion.  Whatever the 
reason, higher total headcount has a big impact on the amount 
of injuries seen in the factory as well. 

VIII. SENSITIVITY ANALYSIS 

Given the confidence intervals above, some sensitivity 
analysis can be done to determine best and worse case 
scenarios for the models.  Knowing the effects of each 
parameter as well as the confidence intervals, a manager at 
Michael D Computer Company can determine best and worst 
case scenarios for Injury and Near Miss Rates found in their 
plant for each of the different effect estimates.  As an example, 
assume the day of the week effect and shift effect are effects 
that management believes could be incorrect.  With this 
analysis, they can adjust their predictions to account for their 
lack of confidence in these two terms.  Assuming the day of 
the week is Wednesday, and the shift being worked is Second 
shift.  If the prediction equation for the model predicted that 
there would be three injuries, but the managers of the factory 
want to predict the best and worst cases given their lack of 
confidence in the Day and Shift estimates, the managers could 
adjust the expected Injury and Near Miss estimates to reflect 
their optimism or pessimism.  In this case, the adjustment 
would be as shown 

Factor Avg Case Best Case 
Adjustment 

Worst Case 
Adjustment 

Wednesday -0.422 -0.642 0.642 

Second Shift 1.048 -0.385 0.385 

Total -1.027 1.027 

The best-case estimate could be as low as 1.973 injuries for 
the shift on Wednesday, or the worst case scenario could 
reflect an Injury Rate as high as 4.027 injuries. 

IX. CONCLUSION 

In the above analysis, a problem in determining the number 
of Injuries that could be expected in the TMC factory was 
discussed. Qualitatively, a number of factors that might 
contribute to estimating the number of injuries were looked at 
in isolation of the other factors.   
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After these factors were looked at individually, it was shown 
that there is a significant difference in the way regression is 
performed between Normal linear regressions and Poisson 
distributed regressions.  Additionally, the methodology for 
determining the Poisson regression estimates was discussed as 
well.  Knowing the methodology, the model for predicting the 
number of Injuries and Near Misses in the TMC factory was 
determined.  The first output of the model was the effect 
estimates for each of the input factors for the model.  After the 
effects were estimated, a prediction equation was derived that 
could be used to predict the number of injuries given the 
varying factors that determine the injury rate.  After the 
prediction equation was determined, the predicted output was 
determined for all historical data in our model, and these 
predictions were compared to the actual outputs, through the 
use of residual analysis.  A confidence level was determined 
for the model by recognizing the standard deviation of the 
residuals as predicted by the model was 0.867, meaning 68% 
of the time, our estimate will be within 0.867 injuries of the 
actual value. 

After the residual analysis was complete, the confidence 
limits were determined for each individual factor in the model. 
By looking at the confidence limits, the significant factors, 
including two days of the week , Saturday and Monday, the 
Shift, Total Headcount and Percent Temporary workers could 
be found.  Finally, given the confidence limits, sensitivity 
analysis was discussed, that managers could use to come up 
with conservative or aggressive estimates for their Injury and 
Near Miss predictions.    Given these results, a manager now 
has the tools needed to help him understand what factors 
impact the number of injuries in the factory.  Better data may 
provide better estimates. 

. 
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