26. Let \bar{n} be the mean number of electrons incident in a time interval Δt. Show that the mean of the square of the deviation from the mean (i.e., the variance, σ^{2}) is

$$
\sigma^{2}=\bar{n}
$$

and thus the root mean square (RMS) of the deviation from the mean (i.e., the standard deviation, σ) is

$$
\sigma=\sqrt{\bar{n}}
$$

27. If the current is $10^{-11} \mathrm{~A}$, what is the mean number of electrons in a time interval of $10^{-6} \mathrm{sec}$? What is the probability that in any given time interval of $10^{-6} \mathrm{sec}$ we will count 10 fewer electrons than the mean?
28. Using an SEM, an image can be formed on a CRT using any one of a wide variety of signals that result from the impingement of the incident electron beam on the sample. Suppose that we want to form an image with a signal that has a low efficiency of excitation and a large background level, as sketched below. (The sketch is to scale.)

Note that at one point on the sample a hole is drilled so that we can determine the true background level. That is, no signal can emerge from the hole. The level $\overline{n_{s w}}$ corresponds to a current at the noise bottleneck that is only 2% of the input beam current.

The SEM is a field emission type with the following specifications:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{S}}=10 \mathrm{~mm} \\
& \mathrm{C}_{\mathrm{C}}=10 \mathrm{~mm} \\
& \mathrm{E}=30 \mathrm{keV} \\
& \Delta \mathrm{E}=0.5 \mathrm{eV}
\end{aligned}
$$

sample-to-collector distance $=10 \mathrm{~mm}$

$$
\mathrm{B}=5 \times 10^{7} \mathrm{~A} / \mathrm{cm}^{2} \mathrm{Sr}
$$

We want a CRT display with 5 grays levels, 500 lines, and a probability of error in any pixel not exceeding 1%. The maximum tolerable frame time is 100 sec .
a) What spatial resolution is achievable?
b) Can you suggest some modifications that would improve the spatial resolution?
29. Read the attached article, [Yamada, S., T. Ito, K. Gouhara, and Y. Uchikawa, "Electron-Count Imaging in SEM," Scanning 13, 165-171 (1991)].
a. Summarize the basic idea of the paper. In particular, what is the origin of the noise that their method reduces? Give an example of a noise source that their method does not impact.
b. In figure 4 , bottom row, the caption tells us that there were on average 10.6 counts/original pixel. Assuming a Poissonian distribution of counts, if you assign "black" to <5 and "white" to >5, what is your probability of error in assigning a given color (black or white) to a pixel (using their digital counting method)?

References

Problem 29

Yamada, S., T. Ito, K. Gouhara, and Y. Uchikawa. "Electron-Count Imaging in SEM." Scanning 13, no. 2 (1991): 165-171.

