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Problem 1: Uniform reflecting properties are a prerequisite for the usual shape 
from shading methods. Consider now a surface covered by a material of spatially 
varying reflectance. Suppose that the brightness can be treated as the product 
of a spatially varying ‘reflectance’ or ‘albedo’ ρ(x, y), and a ‘geometric factor’ 
R(p, q) that depends only on surface orientation. 

There are two unknowns—z(x, y) and ρ(x, y)—at every position on the 
surface, so a single image will not provide enough information to recover both 
(consider, for example, a photographic print of a rounded object where the bright-
ness variations could either be from a rounded object of uniform albedo or from 
a flat object of varying albedo). 

Now suppose we take two images under different lighting conditions. 

(a)	 Combine the two resulting image irradiance equations in such a way as to 
eliminate ρ(x, y). Suppose the new—now ‘ρ-free’—equation can be written 
in the form 

E�(x, y) = R�(p, q). 

(b)	 Show that if the underlying surface actually is a Lambertian reflector. then 
the isophotes in gradient space are straight lines. When will they be parallel 
straight lines? 

(c)	 Show that the isophotes all go through a common point in gradient space 
in the case that they are not parallel. Where in gradient space would you 
expect the highest accuracy in recovering surface orientation? That is, where 
is ‘brightness’ (in the ρ-free equation) most affected by small changes in 
surface orientation? Relate this back to the original imaging situation. How 
should the lighting be arranged to obtain high accuracy? 

Problem 2: An edge detection method starts by finding the brightness gradient 
(Ex , Ey ) at each picture cell using some local estimator of the partial deriva-
tives of image brightness E(x, y). The magnitude of the brightness gradient is 
then computed. Next, “non-maximum suppression’’ keeps for further consider-
ation only pixels where the magnitude of the gradient is a local maximum in the 
direction of the local brightness gradient. 



� 
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The maximum of the gradient need, of course, not fall exactly on a discrete 
pixel location, when the gradient magnitude is considered as a continuous func-
tion of position, Edge locations can be estimated to finer than pixel resolution 
if this continuous function of image position is first estimated from the discrete 
samples of the magnitude of the brightness gradient at pixels. 

We can approximate the magnitude of the gradient locally as a power series 

M(x,  y)  = ax 2 + bxy + cy 2 + dx + ey + f 

where (x, y) is the displacement from the center of a 3 × 3 region of pixels. 

(a)	 Show that the parameters a, b, c, d , e, and f can be estimated from M , Mx , 
My , Mxx , Mxy and Myy evaluated at the origin i.e. at the center pixel. 

(b)	 The following six stencils (a.k.a. computational molecules) can be used to es-
timate the parameters a, b, c, d , e and f . Indicate which stencil corresponds 
to which parameter. 

(1) k1 

+ 1 +1 +1 

− 2 −2 −2 

+ 1 +1 +1 

(2) k2 

− 1 +1 

+ 1 −1 

(3) k3 

+ 1 +1 +1 

− 1 −1 −1 

(4) k4 

− 1 +2 −1 

+ 2 +5 +2 

− 1 +2 −1 

(5) k5 

− 1 +1 

− 1 +1 

− 1 +1 

(6) k6 

+ 1 −2 +1 

+ 1 −2 +1 

+ 1 −2 +1 

(c)	 Determine suitable values for the six constants {ki }, assuming that the pixel 
ispacing is ε. (Hint: apply the stencil to the test functions x yj for i = 0, 

1, . . .  and j = 0, 1, . . .). 

(d)	 Show that the distance from the origin to the maximum in brightness gradi-
ent in the direction of the local brightness gradient is 

ρ = −  
Mx Ex +My Ey 

E2 +E2 

E2	 E2Mxx x + 2Mxy Ex Ey +Myy y
x y 

(e)	 This result only applies when the denominator of the above expression is 
negative. Why? 

(f)	 How large can ρ reasonably become? Keep in mind that a picture cell where 
this computation is performed is one that has survived the non-maximum 
suppression operation. 
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Problem 3a: In a simple model of brightness in a Scanning Electron Microscope 
we have a reflectance map 

2R(p, q) = p 2 + q . 

At a singular point, Ex = 0 and Ey = 0. Assume the singular point is at (0, 0). 
Suppose that the surface near the singular point can be approximated by a power 
series of the form 

z = z0 + sx x + sy y + ax 2 + 2bxy + cy 2 

(a) First, show that sx = 0 and sy = 0 at the singular point. 

(b) Then show that 

Exx − 2Exy + Eyy = k 
� 
(a − b)2 + (b − c)2

� 
for some k. What is the value of k? 

(c) If Exx = Exy = Eyy = 8, what  are  a, b, and c in the series expansion 
given above for the surface height near the singular point? Is there a unique 
answer? Verify that 

b(Exx − Eyy ) = (a − c)Exy 

Problem 3b: In solving the shape from shading problem, we derived the char-
acteristic strip equations from the image irradiance equation 

E(x, y) = R(p, q). 

Here we go in the other direction, showing that solutions of the characteristic 
strip equation satisfy the image irradiance equation. 

Show that — when using the method of characteristic strip expansion to 
solve the shape from shading problem — E(x, y) − R(p, q) is constant along a 
characteristic strip. That is: 

d � � 
E(x, y) − R(p, q) = 0 

dξ  
along the strip. Conclude that, if E(x, y) = R(p, q) at the beginning of the strip, 
then E(x, y) = R(p, q) all along the strip. (If nothing else, this is a sanity check 
on the characteristic strip equations). 

Problem 4: The image brightness gradient is large where an edge is thought to 
occur. Derivatives of brightness can, however, be used for purposes other than 
finding edges. 

We saw this when we computed the perimeter of a “binary’’ object using 

E2 + E2 
y dx dy x 

D 

where E(x, y) = 1 in the object and E(x, y) = 0 in the background, with a 
narrow, smooth transition region in between. 
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For this exercise, consider an image with a circularly symmetric bright spot. 
Consider polar coordinates with x = r cos θ and y = r sin θ . Let 

E(x, y) = f (r)  where r = x2 + y2 . 

Suppose that f (r)  = 1 for r <  R  − ε, and f (r)  = 0 for r >  R  + ε, Then the 
above integral of the magnitude of the brightness gradient yields 2πR—i.e. the 
perimeter of the circular disk as ε → 0. 

(a) Show that 

Ex = f �(r) 
x 

r 
and Ey = f �(r)

y 

r 
and 

Exx = f ��(r) 
x2 

r2 
+ 

f �(r) 
r 

y2 

r2 
, 

Exy = f ��(r)
xy 

r2 
− 

f �(r) 
r 

xy 

r2 
, 

Eyy = f ��(r)
y2 

r2 
+ 

f �(r) 
r 

x2 

r2 
. 

(b) Show that � � � 
Ex Ey 

� Ex 

Ey 
= 

� 
f �(r) 

�2 
, 

and that � ��  � � 
Ey −Ex 

� Exx 

Exy 

Exy 

Eyy 

Ey 

−Ex 
= 

� 
f �(r) 

�3
/r, 

Conclude that � �  
Exx E

2 
y − 2Exy Ex Ey +Eyy E

2 
x 
dx dy = −2π 

E2 +E2 
D x y 

for the image E(x, y) as given above, independent of R. 

(c) How is the result changed if we replace the bright disk with a dark disk in a 
bright background (i.e. replace E(x, y) with 1−E(x, y) ? What happens if 
the bright circular disk has an internal dark circular disk-shaped depression 
where E is zero? What happens if there is more than one bright circular disk 
in the image? 

(d)	 Based on the above, what measure or property do you think is computed by 
this integral when applied to a slightly blurred version of a binary image? 
Hint: It may help to consider an approximation of an arbitrary, simple, 
smooth, closed curve by a sequence of a large number of short circular arcs 
with tangent continuity. 

(e)	 Show that the integrand in the integral above is the directional second deriva-
tive of brightness in a particular direction. What direction? 
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Problem 5a: Consider binary image data streaming in along a row. We feed the 
bits into an adder/accumulator that is reset to zero at the start of the row. Clearly 
at the end of the row the accumulator contains the number of bits that were ‘1’ 
in that row. Now consider a second adder/accumulator that takes its input not 
from the image data, but from the output of the first accumulator. Like the first 
accumulator, it adds its current input to the current total when a new pixel is 
scanned in. 

(a)	 Show that the contribution of a single bit in the image to the output of the 
second accumulator depends on its position in the image row—a bit at the 
end of the row being added in only once, while a bit at the start of the row is 
added in many times. 

(b)	 How would you use such a device (modified if needed) to compute the first 
moment without using multiplication? 

(c)	 Suggest how you could obtain the second (and higher) moments using ad-
ditional accumulators, again without needing multiplication. 

Problem 5b: Consider the binary image of a circular disk that is approximately d 
pixels across. We are going to estimate the expected error in finding the horizontal 
(x) component of the centroid. We break the image up into rows. Within each 
row that intersects the disk there is a contiguous set of pixels where bij = 1. 

Now the value of first and last pixels in this sequence are somewhat uncertain in 
that additive image measurement noise might push the brightness measurements 
below threshold, or push adjacent pixels, now classified as “background,’’ above 
threshold. The centroid of the row of pixels then has an error with standard 
deviation some multiple of the size of a pixel. Due to this error, the centroids of 
different rows intersecting the disc will not be exactly the same. In computing 
the centroid of the disc, we are in essence averaging these noisy estimates. 

How do you expect the error in the x-component of the centroid to depend 
on the size of the image of the disc? 


