
Massachusetts Institute of Technology
 
Department of Electrical Engineering and Computer Science
 

6.820 Foundations of Program Analysis 

Problem Set 1 Out: September 9, 2015 
Due: September 22, 2015 at 5 PM 

This homework is expected to be done individually by all students.
 

Problem 1	 Getting Started with Haskell (10 points) 

This problem is intended to make you comfortable programming in functional languages, namely 
Haskell. The choice of the programming environment is entirely up to you – you can take a look 
at : 

http://www.haskell.org/implementations.html 

and choose whatever you like. We recommend that you download and install The Glasgow Haskell 
Compiler (GHC) available from: 

http://www.haskell.org/ghc/ 

If you encounter any problems, feel free to use the GHC installation on Athena. In order to run it 
you need to add the ghc locker by typing: 

add ghc 

You will also need to add /mit/ghc/bin to the front of your path. You can now run interactive 
GHC by typing ghci. 

In order to make sure things work correctly, type the following excerpt and save it as p1.hs in your 
home directory: 

apply_n f n x =	 if n==0 then x 
else apply_n f (n-1) (f x) 

plus a b = apply_n ((+) 1) b a 
mult a b = apply_n ((+) a) b 0 
expon a b = apply_n ((*) a) b 1 

then run ghci and load the file by typing: 

:l p1.hs 

"Athena is MIT's UNIX-based computing environment. OCW does not provide access to it."
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Once you’ve loaded a file you can reload the file after you’ve changed it on disk with the command: 

:r 

You can now call one of the functions you have just specified by typing: 

expon 3 4 

(You should obtain 81).
 

Now, back to the problem set.
 

Problem 2 Newton’s method (25 points) 

Newton’s method is a technique used to find successively better approximations to the roots of a 
real-valued function. 

Given an initial approximation xi to the root of a function, Newton’s method computes a better 
approximation xi+1 according to the following formula: 

f(xi) 
xi+1 = xi − 

f '(xi) 

Part a: (10 points)
 

In order to apply newton’s method, we will first have to compute the derivative of a given function
 
f . Your first task is to create a function 

diff f dx x 

that computes the derivative of f at x through finite differencing using the formula 

f(x + dx) − f(x)
f '(x) = 

dx 

Compute the derivative of a few simple functions by hand, and check the output of your diff function
 
against those analytical results.
 

Part b: (15 points)
 

Now, you want to create a function
 

newton_iter f f’ x k 

that given a function f , its derivative f ', and an initial estimate x uses k iterations of newton’s 
method to compute a zero for the function. 

Use the newton iter function above together with the diff function to compute zeros for the 
following functions and initial estimates 
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• sin(x), x0 = 0.5, dx = 0.01 

• x3 − 328 ∗ x2 − 1999 ∗ x − 1670, x0 = 100, dx = 0.01 

Compare the results of using diff with different values of dx with the result of using the analyt
ically derived derivative. 

Problem 3 Functions (25 points) 

In this problem we are going to generate a “Set of Integers” type. We will encode the set as a 
decider for membership in the set. 

type IntSet = (Int -> Bool) 

isMember :: IntSet -> Int -> Bool 
isMember f x = f x 

Part a: Simple Sets (2 points)
 

Define the Empty set (the set with no elements) and the set of integers (contains all elements).
 

emptySet :: IntSet 
emptySet x = ... 
allInts :: IntSet 
allInts x = ... 

Part b: Intervals (3 points) 

Write the function: 

-- interval x y contains all the integers in [x,y]
 
interval :: Int -> Int -> IntSet
 
interval lBound uBound = ...
 

Part c: More Interesting Sets (5 points) 

Generate a function that given a number k produces the set of numbers relatively prime to k. (Hint: 
use Euclid’s algorithm) 

Part d: Set Operators (10 points)
 

Now that you can generate some sets, you need to generate operators to combine sets.
 

Write the following functions:
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-- Boolean Operators 
setIntersection :: IntSet -> IntSet -> IntSet 
setUnion :: IntSet -> IntSet -> IntSet 
setComplement :: IntSet -> IntSet 

-- Set generation 
addToSet :: Int -> IntSet -> IntSet 
deleteFromSet :: Int -> IntSet -> IntSet 

Part e: Equality (5 points) 

How would we define the equality operator on IntSets? Would we be able to do better if we had 
used a list of Ints instead of a function to represent our set? What would we have had to give up 
to do that? 

Problem 4	 Using λ combinators (25 points) 

The next two problems on this problem set focus on the pure λ-calculus. The idea is to become 
comfortable with the reduction rules used, and with the important differences between some of the 
reduction strategies which can be used when applying those rules. 

In this problem, we shall write a few combinators in the pure λ-calculus to get familiar with the 
rules of λ-calculus. Here are the definitions of some useful combinators. 

TRUE = λx.λy.x 
FALSE = λx.λy.y 
COND = λx.λy.λz.x y z 
FST = λf.f TRUE 
SND = λf.f FALSE 
PAIR = λx.λy.λf.f x y 
n = λf.λx.(fn x) 
SUC = λn.λa.λb.a (n a b) 
PLUS = λm.λn.m SUC n 
MUL = λm.λn.m (PLUS n) 0 

Now, write the λ-terms corresponding to the following functions in normal form. 

•	 (3 points) The boolean AND function. 

•	 (3 points) The boolean OR function. 

•	 (3 points) The boolean NOT function. 

•	 (6 points) The exponentiation function (EXP). You should write two expressions, one using 
MUL and the other without MUL (note: don’t eliminate MUL by substituting the body of 
the MUL combinator into your first definition—MUL only “stands for” its definition in the 
first place, so you’ve done nothing). 
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•	 (10 points) The function EQ which produces TRUE if its two parameters are equal and false 
if they are not (Hint: use the data structure combinators. Don’t try to construct a lambda 
term from whole cloth.) 

In addition to the given combinators, you are free to define any others which you think would be 
useful. 

Problem 5	 Alternative ways of doing recursion (15 points) 

Define a function FIB in λ calculus that computes the N th Fibonacci number. Create one version 
that uses the Y combinator and another version that uses self application in terms of itself (i.e. to 
compute the N th Fibonacci number you would call FIB FIB N). 

Problem 6 Normal Order NF Interpreter for the λ calculus (50 points) 

In lecture, we discussed interpreters for the λ calculus, and gave two examples: call-by-name, 
written cn(E), and call-by-value, written cv(E). We consider both of these interpreters to terminate 
when they return an answer in Weak Head Normal Form. In this problem, we’re going to look 
at similar interpreters which yield answers in β normal form—that is, an expression which cannot 
possibly be β-reduced anymore. 

Part a: Step-wise Reduction (4 points) 

Consider the following term: 

(λx.λy.x)(λz.(λx.λy.x)z((λx.zx)(λx.zx))) 

Provide the first 2 reduction steps each for normal order and applicative order strategies. 

Remember, in normal order we pursue a leftmost redex strategy (choose the leftmost redex). 
In applicative order we pursue a leftmost innermost strategy (choose the leftmost redex, or the 
innermost such redex if the leftmost redex contains a redex). 

Part b: A Normal Order Interpreter (10 points) 

In the style presented in class, write an normal order interpreter. Remember we’re evaluating to 
normal form not weak head normal form. 

Now we’re going to code this interpreter up in Haskell. 

Part c: Renaming Function in Haskell (10 points) 

An expression will be of the form: 

data Expr = 
Var Name -- a variable 
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| App Expr Expr -- application
 
| Lambda Name Expr -- lambda abstraction
 

deriving
 
(Eq,Show) -- use default compiler generated Eq and Show instances
 

type Name = String -- a variable name 

As a first step, write the function replaceVar :: (Name, Expr) -> Expr -> Expr which given a 
variable name x and a corresponding expression e, and an expression in which to do the replacement 
E, replaces all free instances of the variable x with the given expression e. 

Part d: Doing a Single Step (15 points)
 

Now let’s write a function to do a single step of the reduction.
 

Your normal order reduction will have the form: normNF OneStep :: ([Name],Expr) -> Maybe
 
([Name],Expr). The Maybe type is defined in the prelude as:
 

data (Maybe a) = 
Nothing 

| Just a 

normNF OneStep takes a list of fresh names, and a lambda expression. If there is a redex reduction 
available, it will pick the correct normal order redex and reduces it (possibly using the given fresh 
names for renaming). If a reduction was performed resulting in expr’ and reducing the names list 
to names’ the function returns Just (names’ expr’). Otherwise it will return the value Nothing. 

Part e: Repetition (3 points) 

Now write a function: normNF n :: Int -> ([Name],Expr) -> ([Name],Expr) which given an 
interger n, and an expression does n redex reductions (or as many as were possible) and returns 
the result (and the unused names). 

Part f: Generating New Names (4 points)
 

Now we need a way to generate fresh variables names for an expression. Writing generating a list of
 
variable names is simple leveraging the infinite list of positive integers [1..]. Use this to generate
 
an infinite list of fresh names called freshNames.
 

Remember, we want fresh variables and it is possible that our “fresh” names aren’t really fresh.
 

What we need to do is make sure the ones we choose are not already used in the Expr.
 

Write a function usedNames :: Expr -> [Name] which given an expression returns all the names
 
used in it.
 

Part g: Finishing Up (4 points)
 

Then using these functions write normNF :: Int -> Expr -> Expr which given an integer n and 
an expression does n reductions to it and returns the result. 
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