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Due: October 7, 2015 at 5:00 PM

In this problem set you will have to finish implementing a Haskell program. If necessary, you may
consult Problem Set 1 on how to use the Haskell interpreter ghci on Athena. We ask you to turn in
working code that uses a standard main function so that we can automate testing; in the meantime,
you are welcome to use any main function you like to test and debug your code. Note that you can
only print values that are printable; in particular, functions cannot be printed, and types declared
with a data declaration will only be printable if you include a deriving Show declaration at the
end of the data declaration.

You may discover that you like to get at intermediate results in your code to ensure that they
are correct. There is no officially defined way to do this; however, every Haskell implementation
provides a trace construct, and ghc is no exception:

trace :: String -> a -> a

(In order to use this construct, you’ll need a import Debug.Trace declaration at the top of your
program.) When invoked, trace prints its first argument and returns its second argument. You can
use show to convert printable objects into strings for trace. The dollar sign operator $ represents
right-associative function application (that’s backwards from the usual application) and provides a
handy way to insert traces unobtrusively:

fact 0 = 1

fact n = trace ("fact invoked with input " ++ show n) $

n * fact (n - 1)

Another part of this problem set involves proving a theorem with Coq. See the Lecture 4 slides for
pointers to getting started with Coq. Use of Coq is a new experiment for 6.820, so please don’t be
shy when it comes to letting us know about any crucial information that we’ve neglected to give
out!

Please Remember: The problem set is to be handed in before 5 PM on the day it is due.
We’re changing the submission approach slightly compared to the last problem set: please turn
in one .tgz or .zip file containing all of the files you produce for this problem set. Your
Problem 3 answer should be in PDF or text format based on your preference (and it’s
possible we could be talked into permitting other formats). For the Haskell coding and Coq
proving problems, please turn in only the files that you’ve modified within your archive file,

without any subdirectory structure within that archive.

As always everyone is expected to do their own work. You may discuss with other people
Problems 1-2 and 4 only. However, everyone must turn in their own original work.
You should type your program/Coq proof solutions yourself, without someone else
looking over your shoulder guiding you.

"Athena is MIT's UNIX-based computing environment. OCW does not provide access to it."
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Problem 1 Coq Warm-Up (5 points)

We’ll start with a simple warm-up proof in Coq, about recursive functions over an algebraic
datatype.

Start your solution from the template file ps2.v which itself refers to another file ps2-starter.v

containing Coq formalizations of a type of trees, two functions over it, and some lemmas

that you may find helpful. Place both files in the same directory. ps2.v is the file
you’ll hand in for this problem and the next one.

The ps2.v template contains the theorem statement to prove. You may prove it by any means you
like. There are ways to cheat and prove any theorem magically in Coq, like writing Admitted to
end a “proof,” but these aren’t allowed here, of course.

The next problem description ends in a quick glossary of tactics that could be helpful. You’ll
probably also want to use the tactic form induction x, for induction over variable x from a
theorem statement.

Problem 2 Operational Semantics for Exceptions, in Coq (35 points)

This problem will give you some practice with operational semantics and evaluation contexts, while
also demonstrating how a popular language feature, exceptions, fits into that framework. We’ll
start out with a LATEX definition of λ-calculus with exceptions, including big-step and small-step
semantics. The final goal of this problem is to prove one direction of the equivalence between those
two notions of semantics, following the basic approach from Lecture 4.

We extend λ-calculus syntax like so:

e ::= x | e e | λx. e | throw e | try e catch x⇒ e

v ::= λx. e

Keeping with the untyped theme of λ-calculus, we allow any value to be thrown or caught as an
exception.

We can explain how to execute these programs in a variety of ways. Here’s a (call-by-value) big-
step semantics, where results are either Normal(v), to indicate normal termination with value v; or
Exception(v), to indicate abnormal termination with uncaught exception v.

e1 ⇓ Normal(λx. e′1) e2 ⇓ Normal(v) e1
′ [v/x] ⇓ r

λx. e1 ⇓ Normal(λx. e1) e1 e2 ⇓ r

e1 ⇓ Exception(v) e1 ⇓ Normal(λx. e′1) e2 ⇓ Exception(v)

e1 e2 ⇓ Exception(v) e1 e2 ⇓ Exception(v)

e1 ⇓ Normal(v) e1 ⇓ Exception(v)

throw e1 ⇓ Exception(v) throw e1 ⇓ Exception(v)
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e1 ⇓ Normal(v) e1 ⇓ Exception(v) e2[v/x] ⇓ r
try e1 catch x⇒ e2 ⇓ Normal(v) try e1 catch x⇒ e2 ⇓ r

We can also give a small-step semantics, starting with the definition of evaluation contexts.

C ::= � | C e | v C | throw C | try C catch x⇒ e

This sort of context focuses evaluation on the place where we hope to find a redex in an expression.
To explain the semantics of throwing and catching exceptions, it will be useful to have a more
restrictive context form, which does not allow us to descend inside of a try..catch. We use these
contexts to be sure that any thrown exception is caught by the innermost enclosing handler.

C ′ ::= � | C ′ e | v C ′ | throw C ′

Presuming the natural definitions of C[e] and C ′[e], for plugging an expression into a context, we
can proceed to give the four rules defining the small-step operational semantics.

C[(λx. e) v] −→ C[e[v/x]] C[try v catch x⇒ e] −→ C[v]

C[try (throw v) catch x⇒ e] −→ C[e[v/x]] C[C ′[throw v]] −→ C[throw v]

The last of these rules may be undesirable, because it supports the effectless small-step judgment
throw v −→ throw v, but avoiding such pathological cases requires us to make the rules fancier in
ways that are orthogonal to what interests us in this problem.

We would like to know that the two semantics are equivalent. A useful ingredient there is an
operator dre, for translating a result from the big-step semantics into an expression suitable for the
small-step semantics. In particular:

dNormal(v)e = v

dException(v)e = throw v

Your task is to prove in Coq the formal equivalent of the following theorem, which states one
direction of the semantics equivalence, using −→∗ to refer to the transitive-reflexive closure of −→:

∀e, r. if e ⇓ r then e −→∗ dre

The instructions from Problem 1 should already have set up your working .v file, where you’ll fill
in this proof. As before, ps2-starter.v both defines the semantics and proves some lemmas that
should be useful as you complete this problem. The same rules about cheap-shot “proofs” like
Admitted apply here, but otherwise you’re free to prove the theorem however you like. Here is a
quick glossary of the tactics that we used in our solution, which is about 70 lines of tactic code.



4 6.820 Problem Set 2

• apply THM: apply a theorem or lemma THM, replacing the goal with one subgoal for each
premise of THM.

• apply (THM t1 ... tN): like apply, but uses expressions t1 through tN as the values of
the first N quantified variables in the statement of THM.

• apply THM in H: where H matches the hypothesis of theorem THM, replace H with the conclu-
sion of THM.

• assumption: prove a conclusion (“below the line”) that matches one of the known hypotheses
(“above the line”).

• eapply THM: like apply, but works when not all quantified variables of THM can be deduced
immediately, leaving placeholders to figure out later.

• eassumption: like assumption, but figures out values of placeholders introduced by eapply.

• induction N: induction on the Nth hypothesis appearing in the conclusion, numbering from
left to right starting with 1.

• inversion clear H: case analysis on which rule was used to prove the judgment in hypothesis
H.

– If you’re using an older version of Coq that doesn’t include this tactic, you can instead
write the more wordy inversion H; clear H; subst.

• simpl: perform computational simplifications in the conclusion part of the goal only.

• simpl in *: perform computational simplifications throughout the goal.
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Problem 3 Basic Hindley-Milner typechecking (25 points)

This problem focuses on typechecking in both our simple type system as well as the basic Hindley-
Milner type systems. In this problem we will ignore overloading. Remember→ is right associative;
that means you read a → b → c as a → (b → c).

Part a: (7 points) Simple Types

Give the simple Hindley-Milner type (i.e. no polymorphism) for the last named, top-level function
defined in each of the following code snippets. Each snippet is worth 1 point. Assume that all
arithmetic operations take arguments of type Int and that all comparisons return results of type
Bool. If a type variable is not fully constrained then just assign it type Free.

1. det a b c = (b * b) - 4 * a * c

2. step (a,b) = (b,b+1)

3. sum f n =

if (n<0) then 0

else sum f (n-1) + f n

sumSum f n = sum (sum f) n

4. repeat n f x =

if (n==0) then x

else repeat (n-1) f (f x)

decrement n =

let (result, n_again) = repeat n step (-1,0)

in result

5. loopy x = loopy x

Part b: (10 points) Simple Types and Hindley-Milner

Here are some more Haskell snippets. For each one:

• Determine if it types in our simple type system.

• State whether it types in the HM type-system (i.e. with polymorphism).

• If it types in our simple system, give the type of the last named, top-level function. Otherwise,
if it types in the HM type system, give the principal type of the last named, top-level function.
Otherwise, state why it was not typeable.

1. f x = if x then x+3 else x*2
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2. foo f =

let func x = f x x

in func

3. r g x y = if (g x) then g y

else 1+(g y)

4. s g =

let h x = g (g x)

in h (h True, h False)

5. id x = x

herbert y =

if (id y) then (id 0)

else (id 1)

Part c: (8 points) Theorems for Free

Given a function type, there are often only a few functions we can define that have that type, if
we restrict our attention only to functions that always terminate normally, which rules out such
cop-outs as raising exceptions. For example, we can only write one function that has the type
a → a:

ident x = x

This phenomenon is called “theorems for free” in the functional programming world, because we
are able to deduce certain theorems about behavior of functions just by considering their types.

Try to come up with functions that have the following types and always terminate normally. Be
careful not to give functions whose types are too general! Use Haskell syntax. A few questions may
have several possible answers; you only need to give one. (1 point for each question)

1. a → Int

2. (a, b) → (b, a)

3. a → b → a

4. a → b → b

5. (b → c) → (a → b) → a → c

6. (a → b → c) → b → a → c

7. (a → b → c) → (a, b) → c

8. (a → c) → (b → d) → (a, b) → (c, d)
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Problem 4 Implementing a Simple Typechecker with Inference (35 points)

In this problem, we will be writing a simple program that performs simple type inference on a
small λ-calculus language. In our small language, we have the following definitions for a simple
λ-calculus language with the following expressions and statements.

data Exp =

EVar Ident

| ELambda Ident Exp

| EApp Exp Exp

| ECond Exp Exp Exp

| EPrim Prim

| ELet Stmt Exp

data Stmt =

SEmpty

| SAssign Ident Exp

| SSeq Stmt Stmt

We don’t require you to handle the case of ELet with multiple bindings of the same variable. We
consider such definitions ill-formed, but we won’t require you to detect them (though you’re free
to do so if you like).

We also have the following simple types.

data BaseType = BTInt | BTBool

deriving (Eq, Show)

data Type =

TBase BaseType

| TVar TVar

| TArrow Type Type

deriving (Eq, Show)

You will be writing a program that infers these types given an expression. We will only test your
code on examples that either lead to type errors or produce fully determined types with no TVars,
so those type variables are intended for use in intermediate stages of inference.

Part a: (2 points) Download ps2Code.zip from the course website. Make sure you can compile
the assignment skeleton using the following additional options:

ghc -XDeriveDataTypeable --make Main.hs

Make sure you understand the data types and the utility functions we have provided you.
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How are we handling exceptions in this program? How could we handle exceptions without using
Control.Exception and catch?

[For this and other parts of the problem that ask for prose answers, please include your answers in
the PDF or text file that you hand in.]

Part b: (3 points) Provide an implementation for freeVarsInEnv, which returns the free variables
in the environment. You may want to write an additional function,

freeVars :: Type -> [TVar]

Part c: (7 points) In our type-checking framework, we represent substitutions as a mapping of
type variables to types:

type Subst = [(TVar, Type)]

idSubst = []

Provide an implementation for unification, which produces a substitution that may bind additional
type variables:

unify :: Constraints -> Subst

Note that this function can either unify a pair of types or a list of constraints on types, depending
on how you choose to implement inferTypes.

Part d: (10 points)

Provide an implementation for inferTypes, which takes a constraint environment and an expression
and returns a (possibly modified) constraint environment with the resulting type. Depending on
how you decide to implement your type checker, this function may call unify.

inferTypes :: ConstraintEnv -> Exp -> (ConstraintEnv, Type)

Part e: (3 points) Now you are ready to write the type-checking function:

typeCheck :: TEnv -> Exp -> Type

Part f: (7 points) Write tests for your type checker in Tests.hs to test the different paths of the
type checker. Make sure at least some of these tests cause your type-checker to fail.

Part g: (2 points) How would we extend this implementation to support HM-style polymorphism?

Part h: (1 points) What state did we store while writing this program? How could effects (namely,
mutation) have made this implementation “easier”?
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