
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.820 Foundations of Program Analysis

Problem Set Out: October 22, 2015
Due: Nov 6, 2015 at 5:00 PM

In this problem set, you will be writing your own verification system based on the Z3 SMT solver.
As before, collaboration is encouraged when thinking about the pset, but everyone must submit
their own code. If you have questions or comments about the pset, please post on piazza.

Problem 1 Working with Z3 (10 points)

For the first part of the pset, the goal will be for you to acquire some experience using the Z3
SMT solver. As a first step, you need to download the solver from here: https://github.com/

Z3Prover/z3/releases

The Z3 solver can establish the validity of a logical formula involving terms from different theories,
including integer arithmetic, arrays, and uninterpreted functions. Z3 takes as input problems in a
standard format called SMT-LIB. This format is supported by all major SMT solvers, so generating
formulas in this format will allow you to try different solvers on your problem and pick the one
that works best. For this pset, though, we will be sticking with Z3.

Part a: (5 points) Your goal is to use Z3 to answer the following puzzle.

Joe has a sister named Mary; Mary is 5 years younger than Joe and 8 years older than her cousin
Ted. In 1997, one of the three surprised everyone by going to college. One of the three had just
turned 20 a few years earlier, but he was not the one who caused the surprise. The person who

caused the surprise was born after 1985, so nobody expected college so soon.

Given the facts stated above, use Z3 to determine who was the one who gave the surprise. Specif-
ically, you want to create a Z3 input with variables for the age of each of the three characters in
1997 and a variable to indicate which of the three surprised everyone by going to college. Write
your solution in a file called prob41a.z.

Part b: (5 points) Create a second Z3 input to determine whether the solution you found in the
previous subproblem is unique. Could someone else have caused the surprise? Write your solution
in a file called prob41b.z.

Problem 2 Verification conditions by hand (10 points)

Consider the piece of code below. Your goal is to hand-code the verification condition for that
problem in SMT-LIB and feed it to Z3 to tell whether the code is correct or not with respect to its
pre/post-conditions.

4

https://github.com/Z3Prover/z3/releases
https://github.com/Z3Prover/z3/releases


2 6.820 Problem Set 3

{y=y0, k=k0, t=y0− k0 }
while(t>0){ // Invariant = {t=y−k0 ,k=k0}

y = y−1;
t = t−1;

}
{y <= k0 }

Your solution should be in a file named prob42a.z.

Problem 3 Writing your own verifier (65 points)

Your goal for this part of the assignment is to develop a verifier which given a program with
pre/post-conditions and invariants, produces a verification condition that can be fed into Z3 to
determine whether a program is correct.

As a starting point, you have been given the following files:

• lexer.mll

• parser.mly

• implang.ml

• main.ml

• Makefile

Together, lexer.mll and parser.mly define the syntax of the language you have to support. The
lexer and parser defined in these files will read the program as input and convert it into an AST as
defined in the implang.ml file. The file main.ml contains a driver that currently parses the input
from stdin, calls the stmtToStr function to pretty print the AST into a string and then prints the
string into the screen. After you run make, you will get an executable ./a.out that will read from
stdin and print to the screen, so if you call

> cat test1 .c | ./a.out

you will see the result of pretty printing the program contained in test1.c. After you implement the
verification condition generator, running the same command as above should output a verification
condition in Z3’s input format so I can pipe it directly into Z3. When the program verifies, Z3
should output ’unsat’, and when it does not, Z3 should produce a model. So overall, you are
expected to submit a tar file such that I can run

> tar −xvf yourfile . tar
> make
> cat mytest.c | ./a.out | z3 −in

You want to make sure your executable does not produce additional output that may confuse Z3;
while developing, you may find it useful to precede any degut output with a semicolon, which is
what SMTLIB uses to indicate single line comments.



6.820 Problem Set 3 3

A few notes

• You will want to use the Int datatype for all integer variables. Z3 will automatically determine
whether to use the decision procedures for linear or non-linear arithmetic depending on your
constraints.

• We will not impose any restrictions on where pre/postconditions will appear, so you really
want to treat Preconditions as Assumes and Postconditions as Asserts as will be discussed in
lecture.

• Note that the grammar uses a single ’&’ and ’|’ as and and or operators respectively. Assign-
ment is a single equals sign = and equality comparison is a double equals sign ==.

• Keep in mind that your submission will also be tested on programs with wrong invariants or
pre/postconditions.

One data-structure that you may find useful is a map. You don’t have to use maps to complete
the assignment, but you may find they make your life easier. In ocaml, you use a map as follows:
First, you need to define the type of map you want, for example, if I want a map whose keys will
be strings I have to define it as follows:

module StringMap = Map.Make(String);;

StringMap has to be capitalized. Now, if you want to create an empty StringMap you can just do

let m = StringMap.empty;;

and m is now an empty map. You can then add things to a map, or remove them, or even apply
a function to every key-value pair in the map. One important thing to keep in mind about ocaml
maps, though, is that they are immutable, so you can never actually modify a map. For example,
if you use the add function to add something to a map you are really creating a new map that has
everything the old map had, plus the new stuff. If you want to have a single variable that you use
to refer to a map as it evolves, you can use a reference. For example, consider the following code:

let m = ref StringMap.empty;;

This makes m a reference to a map. By executing

m := StringMap.add ”hello” ”world” !m

you are updating the reference m to now point to a new map, one that is equal to the old map m
with the key-value pair (”hello”, world”) added to it.

You can find details of how maps work in this tutorial: http://ocaml.org/learn/tutorials/

map.html including information on how to print them.

http://ocaml.org/learn/tutorials/map.html
http://ocaml.org/learn/tutorials/map.html


4 6.820 Problem Set 3

Part a: (20 points) To get the first 20 points for this assignment, your verifier needs to work
correctly for straight-line programs that involve only the following kinds of expressions

Binary of binop ∗ expr ∗ expr
| Unary of unop ∗ expr
| Var of string
| Num of int;;

and only the following kinds of statements

type stmt =
Skip
| Post of expr
| Pre of expr
| Assign of string ∗ expr
| Seq of stmt ∗ stmt

In other words, in you can get the first 20pts for this assignment just by suporting straignt-line
programs with simple arithmetic and pre/post conditions.

Part b: (20 points) To get the next 20 points, your program must additionally support conditionals,
so you need to be able to correctly generate verification conditions for programs that use the
construct.

| Ifthen of expr ∗ stmt ∗ stmt

Part c: (25 points) In order to get full credit for the assignment, your code also needs to correctly
support loops.

| Whileloop of expr ∗ expr∗ stmt

Note that the constructor for the loop includes an expression corresponding to the loop invariant
in addition to the usual loop exit condition and loop body.

Part d: (Bonus 10 points) You can get 10 extra bonus points if in addition to the core language,
your verifier also supports array reads and writes using the expression

| Arr of string ∗ expr

and the statement

| ArrAssign of string ∗ expr ∗ expr

To claim these extra 10 bonus points, you need to provide 3 test programs that exercise the array
functionality.

Part e: (Bonus 10 points) You can get an additional 10 bonus points if your system also supports
universally quantified predicates for invariants, pre-conditions and post-conditions for programs



6.820 Problem Set 3 5

involving arrays. Within your predicate, it will be assumed that any variable that starts with
an underscore is universally quantified. So for example, your system should be able to prove the
following program:

Pre( !( i < n) | A[ i ] == 0 );
i = 0;
while( i < n){
Inv( i<=n & (!( i < i) | A[ i ] == i) );
A[i ] = i;
}
Post( !( i < n) | A[ i ] == i );

Problem 4 Testing your verifier (15 points)

In addition to your verifier, you need to submit 5 tests that exercise all the constructs in your
language.



MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



