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For this homework you will implement an analysis based on abstract interpretation that will verify
complex routines involving pointer manipulations and will attempt to certify that they cannot
make any illegal memory accesses. In this assignment, you will be introduced to the concept of
Heap abstractions; that is, abstract domains that can be used to reason about the heap. In this
exercise, we will do a very simplified form of heap analysis based on predicate abstraction and
interval domains. You will be working with the same language you used for PSet 4, extended with
memory allocation and pointer reading and writing.

Concrete semantics. For this exercise we will use a very simple model of the semantics of
memory allocation and usage in C. In this model, like in real C, a call to malloc(k) results in the
allocation of a buffer of size k. Unlike C, however, we will assume that k is the size in words (as
opposed to bytes) and that all values will be exactly one word, so no need to worry about alignment.
In our model, each pointer can be broken into two parts: a base address pointing to the beginning
of a buffer, and an offset into that buffer. Pointer arithmetic can be used to change the offset, but
it cannot be used to make the pointer point to a different buffer. For simplicity, our model will not
deal with deallocation.

The heap will be represented with two functions: hd : addr× offset→ value maps a base address
and an offset to the value stored at that address, and the function hs : addr → size maps a base
address to the size of the buffer that starts at that address. In addition to the heap, we use an
environment σ to track local variables. The semantics of our language are fairly straightforward;
the main new features compared to the semantics we have seen in class are those expressions and
statements that use the heap. Expressions in our language take a heap and a local environment and
produce a value, which can be either an integer value or an (addr,offset) pair. For example, when
dereferencing an expression e , the expression must evaluate to a pointer whose offset is smaller
than the size of buffer it points to.

〈e, (σ, hd, hs)〉 → (l, t) 0 ≤ t < hs (l) hd (l, t) = v

〈∗e , (σ, hd, hs)〉 → v

As we said before, pointer arithmetic can only be used to add integer offsets to pointers

〈ep, (σ, hd, hs)〉 → (l, t) 〈ei, (σ, hd, hs)〉 → n

〈ep + ei , (σ, hd, hs)〉 → (l, t+ n)

Since malloc (k) can modify the heap, we won’t treat it as an expression; instead, we treat
x := malloc(k) as a special kind of statement. Notice that malloc initializes the entire buffer to
zero.
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〈e, (σ, hd, hs)〉 → k l is a fresh address

〈x := malloc(e) , (σ, hd, hs)〉 → (σ[x→ (l, 0)], hd[(l, 0)→ 0, . . . , (l, (k − 1))→ 0], hs[l→ k])

The other new kind of statement is assignment into memory

〈e1, (σ, hd, hs)〉 → (l, t) 0 ≤ t < hs (l) 〈e2, (σ, hd, hs)〉 → v

〈∗e1 := e2 , (σ, hd, hs)〉 → (σ, hd [(l, t)→ v] , hs)

With this semantic model, we are now ready to define our abstract domain. There are a lot of
things we are not modeling, such as the different widths of different data types or various alignment
issues, but this simple model will suffice to allow us to reason about interesting properties of heap
manipulating programs.

Problem 1 Setting up the abstract domain (25 points)

In order to do abstract interpretation, we need to define a lattice of abstract values. The high-level
idea behind our abstraction is that we want to use a one abstract address to represent all the buffers
created at the same allocation site. In addition to that, we need an abstract address to represent
buffers allocated outside the scope of the current code, and one to represent null. As for integer
values, we will use a simple flat lattice of integers to allow us to check for accesses that may exceed
the buffer size.

For example, consider the code below (variable declarations have been omitted for convenience):

// all variables initially point to something in the outside world = allocation site out

h = malloc(40); // allocation site 1

y = h;

while(*Nref>0){

y = y+ 4;

*y = malloc(40); // allocation site 2

y = *y;

*Nref = (*Nref) - 1;

}

For this code, our analysis should be able to tell us that the two pointer dereferences of y will
always be legal, but that the dereferences of Nref may fail. The analysis will maintain four abstract
locations, one corresponding to allocation site 1 and one to allocation site 2. In addition to those,
there will be the abstract location corresponding to the outside world, and the one corresponding
to null:

ID Corresponding concrete values
null A value which is not a valid address
out Addresses of objects allocated outside the scope of the code
1 Addresses of buffers allocated at site 1
2 Addresses of buffers allocated at site 2
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The set of abstract addresses, including null and out (which refers to objects allocated outside the
scope of the current code) will be called Alloc . Note that the abstract addresses in Alloc do not
form a lattice. In order to construct a lattice from the abstract elements, we will use a powerset
construction, so our abstract domain will correspond to subsets of Alloc; T will be equal to Alloc
, ⊥ will be the empty set, and the partial order will be determined by the subset relation. We
will use P(Alloc) to refer to the powerset lattice. Now, for integers (including offsets and buffer
lengths), we will use a simple flat lattice like the one used for constant propagation. We will call
this lattice Int = Z ∪ {> ⊥} .

As we said in the concrete semantics, pointers actually have two components, a base address
and an offset, so they need to be represented by a lattice corresponding to the cross product
E = P (Alloc)×Int. In principle, integer variables should have values in Int , while pointer variables
should have pointers of type Alloc. However, we can simplify the implementation of the analysis by
using the E lattice to represent both integers and pointers, eliminating the need to reason about the
type of a value. In particular, a constant like 5 would have an abstract value (⊥, 5). This design
choice will mean that the analysis will not be able to detect cases where pointers and integers are
being mixed illegally, but such cases are best checked by a type system. At the beginning of the
program, all variables have the abstract state ({out, null},>).

The abstract state Now, we need to define the abstract state of the program, and how the
abstract state is updated by the execution of the abstract program. The abstract state of the
program is going to consist of a σ̄ which maps variable names to elements in the combined lattice.

¯We will use an abstract heap hd which maps an abstract location and an offset abstract values, and
¯an hs that keeps information about buffer sizes.

σ̄ : var→ E ¯ ¯hd : (Alloc× Z)→ E hs : (Alloc)→ Int

Using the abstract state, we can define the abstract semantics of expressions and assignments; for
example, for variables, constants and object allocation, you have:

〈
¯ ¯e , (σ̄, h lthd, hs)

〉〈 → (a, k) mall(o clis the )〉 allocation site

¯ ¯x := mallo cl (e) , σ̄, hd, hs
→ { } ¯ 0)→ ¯

→
(σ[x ( l , 0)], hd[(l, (⊥, 0) t ¯ ¯ ¯hd (l, 0) , . . . , (l, nk)→ (⊥, 0) t hd (l, nk)], hs[l→ k t hs (l)])

where nk is the maximum concrete value in γ(k) . Note that if k is >, then logically speaking, all
¯entries of the form hd[(l, x)] for all x will have to be updated. You implementation needs to be

able to account for this.

〈
¯ ¯NULL , (σ̄, hd, hs)

〉
→ ({null} , 0)

〈
¯ ¯n , (σ̄, hd, hs)

〉
→ (⊥, n)
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〈
e1, (σ̄, h

〉〈¯ ¯
d, hs) → ¯ ¯(a1, n1) e2, (σ̄, hd, hs) → (a2, n2)

¯ ¯e1 + e2, (σ̄, hd, hs)

〈〉
→ (a1 t a2, n1

〉
+ n2)

〈
¯ ¯x , (σ̄, hd, hs) → σ̄(x)

Notice that the address component of each heap lo

〉
cation is initialized to ⊥ instead of null. This

allows the analysis to determine, for example, that a location cannot be null. A negative conse-
quence of this decision, however, is that the analysis will not be able to tell that a memory location
may be uninitialized, since a location that is initialized on only one branch of a conditional, for
example, will just look like it has been fully initialized.

Part a: Answer the following Questions (25 points)

• Write the rule for memory access (∗x).

• Write the rule for memory update ∗x = e. Note that with this abstraction, updates cannot
be destructive. For example, suppose hd (loc1, 5) = (a, b); if you have a variable x with
abstract value (loc1, 5), and you do a heap update through x (i.e. you write *x = (c,d)), the
new values (c,d) cannot destroy the old values (a,b), because hd (loc1, 5) = (a, b) tells you
something about the values held at position 5 of all the buffers ever allocated by allocation
site 1, but you don’t know how many buffers there are, or which ones have which values, so
the best you can do is to update hd (loc1, 5) to (a t c, b t d) .

• Perform the abstract interpretation by hand and show how the abstract state is going to look
like at the end of the program below:

l = malloc(2); // allocation site 0

p = malloc(10); // allocation site 1

*l = p;

t = l+1;

*t = p;

while(*){

p = p+ 1;

x =malloc(10); // allocation site 2

*p = x;

p = *p;

*t = p;

}

Problem 2 Implementing the analysis (75+ points)

The starter code for this assignment includes the following files.
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• lexer.mll

• parser.mly

• main.ml

• implang.ml

• absint.ml

• cprop.ml

You should be familiar with most of these files from the last pset. The two new files are absint.ml,
which includes functions for creating control flow graphs from programs and for performing abstract
interpretation on them, and cprop.ml which implements a very simple analysis based on abstract
interpretation for constant propagation. In main.ml you will find code that parses a program from
stdin, generates a control flow graph, runs the constant propagation analysis on it and then prints
the abstract state at the beginning of every basic block.

Your main deliverable is to output a list of statements with each of them labeled with whether or
not a memory error can occur at that statement, either because of a null pointer dereference or
because of a memory access outside the bounds of an allocated buffer (you don’t have to worry
about accesses to uninitialized memory locations). The skeleton code we have provided contains
a function called ’printResult’ that you must use to print all your results. The function currently
prints out ”YES” for every statement, so you should change it so that it prints NO on those
statements that are not guaranteed safe according to your analysis. The grading strategy is as
follows: we will run your analysis on a test suite and compare the results with those of our own
implementation of the analysis described in this homework. For this we will compute the following
numbers:

• C = the number of statements where your analysis conservatively said NO but our analysis
said YES.

• S = the number of statements where our analysis conservatively said NO, but your analysis
correctly said YES.

• F= the number of statements where your analysis incorrectly said YES.

• N= the total number of statements where our analysis said NO (for normalization purposes).

If your analysis crashes on a test we will treat it as if it had said ”YES” to everything on that test.
Your total score for this section will be computed as (3 ∗ (N −F )−C + 2 ∗S)/(4 ∗N) ∗ 100. So the
idea is that if your analysis matches exactly ours, you will get the full 75 pts (since F,C and S=0),
and if your analysis is perfectly accurate, you cannot get more than 125 pts (since S < N). (dont
worry, we wont give you negative points). The following are things you can implement to increase
the precision of your analysis in order to get those extra 50 points (in order of highest to smallest
payout for a given amount of effort):

• Filter your abstract state on branches. In particular, branches of the form if (t == null).
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• Keep track of allocation sites that will only execute once so you can do destructive updates
on those regions in the abstract heap.

• Implement a more sophisticated abstraction for the integer part of the abstract value (such
as an interval domain).

In order to qualify for the extra credit, we ask that you also provide at least 4 tests where the
improved precision of the analysis makes a difference.
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