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Problem Set 6 

Problem 1: cellof Subtyping 

Do exercise 11.6 on page 400 of the course notes. 

Problem 2: Polymorphic Types 

Below are some programs written in Scheme/Y. Translate them into Scheme/XSP, being as faithful as pos
sible in maintaining the spirit of the original computation. 

a.	 (program 
(define positive? (lambda (n) (primop > n 0))) 
(define compose (lambda (f g) (lambda (x) (f (g x))))) 
((compose not? positive?) 3)) 

b. (program 
(define sum-integers 

(lambda (int-list) 
(if	 (null? int-list) 

0 
(if (primop integer? (primop car int-list)) 

(primop + (primop car int-list) 
(sum-integers (primop cdr int-list))) 

(sum-integers (primop cdr int-list)))))) 
(sum-integers (list 1 (symbol a) 2 #t))) 

c.	 (program 
(define inc (lambda (n) (primop + n 1))) 
(define twice (lambda (f) (lambda (x) (f (f x))))) 
(((twice twice) inc) 3)) 

Problem 3: Exception Types 

Alyssa P. Hacker decides to extend Scheme/X with the dynamic exception handling primitives catch and 
throw: 

E ::= (throw Ev ) | (catch Eh Eb) | . . . 
The informal operational semantics of these constructs is as follows: 

•	 (throw Ev ) signals a dynamic exception whose value V is the value of Ev . When an exception is 
signalled via throw, normal evaluation is aborted, and the first dynamically enclosing catch is found 
to handle the exception. If there is no enclosing catch, the behavior of throw is undefined. 



•	 (catch Eh Eb) first evaluates Eb. If an exception with value V is signalled during the evaluation of 
Eb, the value of the catch expression is the value of (call Eh V ). If no exception is signalled during 
the evaluation of Eb, the value of the catch expression is the value of Eb. Note that the handler 
expression Eh is never evaluated if no exception is raised in the body Eb. 

For example: 

(let ((foo (lambda ((x int)) 
(if	 (= x 0) 

(throw 300) 
1000)))) 

(catch (lambda ((x int)) (+ 
(+ 20 (foo 7)))) 

⇒ 1020 

(let ((foo (lambda ((x int)) 
(if	 (= x 0) 

(throw 300) 
1000)))) 

(catch (lambda ((x int)) (+ 
(+ 20 (foo 0)))) 

⇒ 301 

(catch (lambda ((x int)) (+ x 
(throw (throw 7))) 

⇒ 8 

x 1)) 

x 1)) 

1)) 

Alyssa also modifies the type system of Scheme/X. She assigns each expression two types, a normal type 
(denoted with :) and an exception type (denoted with $ ). When she writes 

E : Tn$Te 

she means that expression E has normal type Tn and exceptional type Te. The exception type is the type 
of the argument to the throw that raised the exception. An expression that cannot produce an exceptional 
(normal) value will have void as its exceptional (normal) type. Here are some examples: 

(throw 1) : void $ int 
1 : int $ void 

(if #t (throw (symbol true)) 1) : int $ sym 
(throw (throw 1)) : void $ int 

(catch (lambda ((x int)) x) (throw 1)) : int $ void 

Notice that an exception type is not needed for the arguments to a procedure. Also notice that the phrase 
Tn $ Te is not a type. 

The Scheme/X typing operator : is a relation on Expression × Type, while Alyssa’s new typing operator 
: $ is a relation on Expression × Type × Type. Type environments are the same for both relations: they 

map identifiers to types. In particular, in the case of : $ , type environments do not map identifiers to pairs 
of types. 

Alyssa also wants to add a limited form of subtyping to the language. (Recall that Alyssa is starting 
with Scheme/X and not Scheme/XS, so that there is no subtyping in the original language). She decides 
that void is a subtype of all types, and this is the only subtyping relationship that she allows in the lan
guage. She defines LUB, a least-upper-bound operator that takes a sequence of types and has the following 
functionality: if all of the types in the sequence are void, LUB returns void; if all the non-void types are the 
same type, LUB returns this type; otherwise, LUB is undefined. 
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For example: 
LUB [void, void] = void


LUB [int, int] = int

LUB [void, int] = int


LUB [bool, void, bool] = bool

LUB [void, bool, int] = undefined


Here is how LUB is used in Alyssa’s rule for if: 

A � E1 : Tn1 $ Te1 

A � E2 : Tn2 $ Te2 

A � E3 : Tn3 $ Te3 

Tn1 � bool [if ] 
Tn = LUB [Tn2 , Tn3 ] 

Te = LUB [Te1 , Te2 , Te3 ] 
A � (if E1 E2 E3) : Tn $ Te 

Unfortunately, Alyssa was called away to help with 6.001 before she could complete her type checking rules 
and you are asked to help out. 

a.	 Modify the grammar of Scheme/X types from Figure 11.4 on page 375 of the course notes to accom
modate Alyssa’s new features. 

b. Give the typing rules for each of the following forms: 

(i) throw 

(ii) catch 

(iii) lambda 

(iv) application 

c. Give a modified subtyping rule for procedure types. 

Problem 4: Type Reconstruction 

In this problem, you will extend the type system of Scheme/R to support the module and with forms. 
(Scheme/R is presented in section 11.7 of the course notes.) 

The expression and type grammars of Scheme/R are extended as follows: 

E ::= (module (define I E)∗) | (with (I∗) Em Eb) | . . . 
T ::= (moduleof (val I T )∗) | . . . 

The (I∗) that appears in the with expression is the list of identifiers which are defined by the module value 
of Em. 

There are many examples of the use of module and with throughout the course notes. We will just give 
one example here to illustrate how we would like you to type them. The expression 

(let ((m (module (define id (lambda (x) x))))) 
(with (id) m (if (id #f) (id 3) (id 4)))) 

should be well-typed, and have type int. Note in particular the polymorphic use of id in the body of the 
with expression. 

a.	 Extend the typing rules of Scheme/R (given in Figure 11.15 of the course notes) to handle module and 
with. 
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b. Suppose the syntax of with were changed to be 

(with Em Eb). 

Briefly explain how this would prevent you from providing a working type reconstruction algorithm. 
You should provide a relevant example input expression. 

c.	 Extend the type reconstruction algorithm of Scheme/R (presented in Figures 11.16 and 11.17 of the 
course notes) to handle module and with. 

d.	 The file code/ps6/recon.scm in the course directory contains an implementation of the Scheme/R 
type reconstruction algorithm. 

Extend recon.scm to handle module and with. We have written recon.scm so that you only need to 
define two functions, reconstruct-module and reconstruct-with, in order to handle module and 
with. 

An appendix documenting recon.scm is attached to this problem set. 

e.	 Provide a transcript showing that your implementation works. Your transcript must show how your 
implementation handles the following test cases (which can be found in the file module-examples.scm): 

(let ((m (module 
(define twice (lambda (f) 

(lambda (x) 
(f (f x)))))))) 

(with (twice) m 
(if	 ((twice not?) #f) 

((twice (lambda (x) (+ 1 x))) 4) 
5))) 

(let ((m (module 
(define a 4) 
(define b 5))) 

(b 6)) 
(with (a) m b)) 

You should also run your code on other test cases of your own choosing. Some of these should be 
well-typed using your rules, and some should not be well-typed. 
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Documentation for recon.scm 

This appendix contains some information about the file recon.scm, which is an implementation of the 
Scheme/R type reconstruction algorithm described in Section 11.7 of the course notes. 

Before extending the type reconstruction program, we suggest that you first play with the existing im
plementation. The file recon-test.scm contains a number of interesting Scheme/R expressions to type-
check. You should also invent some examples of your own to help you understand the power and limita
tions of type reconstruction. 

The file module-examples.scm contains some expressions that you should test your extensions on. You 
should also invent some test cases of your own. 

Beware that recon.scm is written in a different style than the algorithm R of the course notes. recon.scm uses 
side effects to perform unification on a global substitution, and so a substitution is not passed explicitly as 
an argument to the reconstruction algorithm. 

Expressions


The Scheme+ datatype exp describes the grammar of Scheme/R expressions including module and with:


(define-datatype exp 
(unit->exp) 
(boolean->exp bool) 
(integer->exp int) 
(string->exp string) 
(symbol->exp sym) 
(variable->exp sym) 
(lambda->exp (listof sym) exp) 
(call->exp exp (listof exp)) 
(if->exp exp exp exp) 
(primop->exp primop (listof exp)) 
(let->exp (listof definition) exp) 
(letrec->exp (listof definition) exp) 
(set!->exp sym exp) 
(begin->exp exp exp) 
(module->exp (listof definition)) 
(with->exp (listof sym) exp exp) 
) 

(define-datatype definition 
(make-definition sym exp)) 

Type Expressions and Type Schemas 

The Scheme+ datatype type describes the grammar of type expressions. The base type case is used for all 
base types, while the compound case is used for compound types (currently this includes procedure types 
and list types, but it could perhaps be extended to include tagged union types and reference types as well). 
The moduleof case is used to describe the types of module values. 

(define-datatype type 
;; type variable 
(tvariable->type tvariable) 
;; (unit, bool, int, string, symbol) 
(base->type sym) 
;; ->, list-of, etc. 
(compound->type sym (listof type)) 
;; placeholder for unconstrained tvars 
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(unknown->type)

;; (moduleof (val I T)*)

(moduleof->type (listof sym) (listof type))

)


A number of base types are defined, as well as the constructor make-arrow-type, which takes a list of 
argument types and the result type and returns the corresponding procedure type. 

boolean-type : type 
integer-type : type 
string-type : type 
symbol-type : type 
unit-type : type 

make-arrow-type : (-> ((listof type) type) type) 

The function new-tvariable creates a fresh type variable: 

new-tvariable : (-> (symbol) tvariable) 

The argument of new-tvariable is only for identification purposes; it has no semantic content. 
The unparse-type procedure is handy for debugging: 

unparse-type : (-> (type) sexp) 

Type schemas are not types. The following datatype is useful (in type environment manipulations) for 
determining whether a variable is bound to a type variable or a schema: 

(define-datatype tvar-or-schema 
(tvar->tvar-or-schema tvariable) 
(schema->tvar-or-schema schema)) 

(define-datatype schema 
(make-schema (listof tvariable) type)) 

The function compute-schema creates a type schema from a type and an environment, using the current sub
stitution. It corresponds to the function Rgen in the reconstruction algorithm. The function instantiate-schema 
creates an instance of the schema by replacing the bound variables by fresh type variables. 

; (compute-scheme T A) = Rgen(T, A, S), with S implicit 
compute-schema : (-> (type tenv) schema) 
instantiate-schema : (-> (schema) type) 

Unification 

The unify! procedure unifies two types and returns unit. Unlike the unification function in the course notes, this 
is a side-effecting version of unification; it does not return the resulting substitution, but simply mutates the 
current substitution to be the result of the unification. A mutation-based version of unification makes sense 
because the substitution as used in the reconstruction algorithm is single-threaded, like a store. unify! 
generates an error if the expressions don’t unify. 

unify! : (-> (type type) unit) 

Type Environments 

A type environment or type assignment maintains bindings between identifiers and either type variables 
or type schemas. The interface to type environments is defined by these functions: 
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tlookup : (-> (tenv var) tvar-or-schema) 
extend-by-tvariables : (-> (tenv (list-of symbol) 

(list-of tvariable)) 
tenv) 

extend-by-schemas : (-> (tenv (list-of symbol) 
(list-of schema)) 

tenv) 

Top Level 

The top level call to the type reconstruction algorithm is through the procedure recon. This procedure takes 
an s-expression as an argument, parses it, performs type reconstruction, and returns the unparsed type as 
an s-expression. It signals an error if the type cannot be reconstructed. 

recon: (-> (sexp) sexp) 

The reconstruct procedure takes an expression and a type environment, and returns the type of the ex
pression in that type environment. (It signals an error if the type cannot be reconstructed.) This is the main 
dispatch for the type reconstruction algorithm. It handles literals directly, and otherwise dispatches to the 
appropriate specialist routine reconstruct-variable, etc. 

(define (reconstruct exp tenv) 
(match exp 

((unit->exp) unit-type) 
((boolean->exp _) boolean-type) 
((integer->exp _) integer-type) 
((string->exp _) string-type) 
((symbol->exp _) symbol-type) 
((variable->exp var) 
(reconstruct-variable var tenv)) 
((lambda->exp formals body) 
(reconstruct-lambda formals body tenv)) 
((call->exp op args) 
(reconstruct-call op args tenv)) 
((if->exp test con alt) 
(reconstruct-if test con alt tenv)) 
((let->exp defs body) 
(reconstruct-let defs body tenv)) 
((letrec->exp defs body) 
(reconstruct-letrec defs body tenv)) 
((module->exp defs) 
(reconstruct-module defs tenv)) ;* 
((with->exp vars mod body) 
(reconstruct-with vars mod body tenv)) ;* 
)) 

reconstruct is essentially the function R described in the type reconstruction algorithm, except that the 
current substitution is passed implicitly (using side effects). The procedures used in the two *’ed lines are 
not provided; you must write these as a part of your assignment. 
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