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Department of Electrical Engineering and Compvter Science 

1998 Midterm and Solutions 
There are four problems on this examination. They are followed by an appendix that contains reference 
material from the course notes. The appendix contains no problems; it is just a handy reference. 

You will have eighty-five minutes in which to work the problems. Some problems are easier than others: 
read all problems before beginning to work, and use your time wisely! 

This examination is open-book: you may use whatever reference books or papers you have brought to class. 
The number of points awarded for each problem is placed in brackets next to the problem number. There 
are 100 points total on the exam. 

Do all written work in your examination booklet – we will not collect the examination handout itself; you 
will only be graded for what appears in your examination booklet. It will be to your advantage to show 
your work – we will award partial credit for incorrect solutions that make use of the right techniques. 

If you feel rushed, be sure to write a brief statement indicating the key idea you expect to use in your 
solutions. We understand time pressure, but we can’t read your mind. 

This examination has text printed on only one side of each page. Rather than flipping back and forth be-
tween pages, you may find it helpful to rip pages out of the exam so that you can look at more than one 
page at the same time. 

Appendix: 

Page 6 FLK SOS

Page 8 Standard denotational semantics of FLK! from Chapter 11


The figures in the Appendix are very similar to the ones in the course notes. Some bugs have been fixed, 
and some figures have been simplified to remove parts inessential for this exam. You will not be marked 
down if you use the corresponding figures in the course notes instead of the appendices. 



Problem 1: The Two Game [10 points] 

Indicate whether each of the following expressions in the specified FL language-variant evaluates to the 
number two (2). 

a. [2 points] Dynamically-scoped Call-By-Name FL 

(let ((foo (let ((a 5)) 
(lambda (x) (- a x))))) 

(let ((b 3)) 
(foo b))) 

b. [2 points] Statically-scoped Call-By-Reference FLAVAR! 

(let ((x 0) 
(foo (lambda (y z) 

(begin (set! y 2) 
(/ 4 z))))) 

(foo x x)) 

c. [2 points] Statically-scoped Call-By-Value FL 

(let ((foo (proc x (rec x x))) 
(bar (proc y 2))) 

(bar foo)) 

d. [2 points] Statically-scoped Call-By-Value FLK! (with label and jump) 

(label bar 
(* 2 (label foo 

(jump foo (jump bar 1))))) 

e. [2 points] Dynamically-scoped Call-By-Value FL 

(let ((x 1)) 
(let ((f (lambda () x)) 

(g (lambda (h) (h)))) 
(let ((x 2)) 

(g f)))) 
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Problem 2: Operational Semantics [30 points] 

YOUR ANSWERS TO THIS QUESTION SHOULD BE BASED ON THE FLK SOS AS PRESENTED IN AP
PENDIX A. 

Louis Reasoner has an idea for a new FLK command, (terminate E1 E2). If either E1 or E2 terminates 
with a value or an error, (terminate E1 E2) will also terminate with a value or an error. In evaluating 
terminate, we run one expression for one step, then run the other expression for one step, and so on. Louis 
initially worked out a few examples of how his new construct would work: 

(terminate 1 2) ⇒ 1 or 2 (implementation dependent)

(terminate 2 (rec x x)) ⇒ 2

(terminate 1 (call 3 0)) ⇒ 1 or error: can’t apply non-procedure (implementation dependent)

(terminate (rec x x) (/ 3 0)) ⇒ error: divide by zero

(terminate (rec x x) (rec x x)) ⇒ ⊥


Louis is really excited about the terminate construct. His old implementation of FLK required him 
to reboot any time his program ran into an infinite loop. Although he hasn’t solved the halting problem, 
now he can guarantee not to have to reboot (excepting, of course, when his new-fangled operating system 
crashes) by testing his programs with terminate and his new (timer N ) construct. 

Louis defined the following transition rule(s) for timer: 

(timer N1) ⇒ (timer N2) 
where N1 > 1 [timer-countdown] 

and N2 = N1 − 1 

(timer 1) ⇒ #u [timer] 

Louis can now use the terminate construct to run his program might-go-infinite for exactly 1000 steps 
(where we consider each transition to be one step). The following expression will return the result of might-
go-infinite if it completes in under 1000 steps, otherwise it returns #u. 

(terminate (timer 1000) might-go-infinite ) 

Unfortunately, Louis set off for Hawaii before he was able to extend the FL Operational Semantics to 
include terminate. In his absence, you are asked to finish it up. 

a. [15 points] Give the transition rules for terminate. 

b. [5 points] Are your rules confluent? 

c. [10 points] Show how the following expression would be evaluated using the rules above: 

(terminate (call (proc x (primop + x 2)) 5) 
(if (> 3 4) 

(rec x x) 
(proc y 1))) 
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Problem 3: Denotational Semantics and Mutation [30 points] 

YOUR ANSWERS TO THIS PROBLEM SHOULD BE BASED ON THE STANDARD DENOTATIONAL 
SEMANTICS FOR FLK! AS PRESENTED IN APPENDIX B. 

Alyssa P. Hacker has decided to add a new feature to FLK!: the ability to undo store modifications. She 
introduces a single new form into FLK! called undo!: 

(undo!) ; undo the last mutation to the store 

Here is an example of how undo! can be used to undo a cell-set! using FL! sugar: 

(let ((c (cell 0))) 
(begin 

(primop cell-set! c 1) 
(undo!) 
(primop cell-ref c))) 

⇒ 0 

Before Alyssa is called away to testify at a large antitrust trial, she managed to update the Standard 
Semantics found in Appendix B as follows: 

Cmdcont = StoreStack → Answer 
∗ z ∈ StoreStack = Store 

T L [E ] = E [E ] empty-env top-level-cont empty-store.[]Store 

You can assume all of the semantic algebra helper functions that deal in CmdCont have been prop
erly updated. Store operations same-location?, next-location, empty-store, fetch, assign, fresh-loc, and first-fresh 
remain unchanged. 

a.	 [10 points] As she was running out the door, Alyssa mumbled something about the dangers of undo
ing cell creations using undo!. Give an example of a program that would generate a run-time error if 
Alyssa permits the cell form to be undone. 

b.	 [10 points] Dissatisfied with the possibility of run-time errors, Alyssa faxes you a revised meaning 
function for cell and assures you that we can prevent undos to cell creations. 

E [(primop cell E) ] = λek . E [E ] e (λvz . matching z 
� s.z1 ] (k (Location �→Value (fresh-loc s )) 

(assign-to-all (fresh-loc s) v z)) 
endmatching ) 

assign-to-all : Location → Storable → StoreStack → StoreStack 
= fixLocation → Storable → StoreStack → StoreStack λf . (λlσz . matching z 

� []Store ] []Store 

� s.z1 ] (assign l σ s). (f l σ z1) 
endmatching ) 

Provide a revised meaning function for E [(primop cell-set! E1 E2) ]. 

c.	 [10 points] Also provide a revised meaning function for Alyssa’s new undo! form, E [undo!) ]. Her 
notes specified that even in the absense of cell-set!’s, undo! should not produce any errors. 
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Problem 4: Denotational Semantics: Control [30 points] 

YOUR ANSWERS TO THIS PROBLEM SHOULD BE BASED ON THE STANDARD DENOTATIONAL 
SEMANTICS FOR FLK! AS PRESENTED IN APPENDIX B. 

Ben Bitdiddle is now ensconced in a major research university where he’s been fooling around with loops 
in FLK!. Ben has decided to add the following features to FLK!: 

E ::= . . . all FLK! forms . . . | (loop E) | (exit E) | (jump) 

Here’s an example of how Ben’s new loop construct would work: 

(let ((c (cell 0))) 
(loop 

(begin 
(primop cell-set! c (+ (primop cell-ref c) 1)) 
(if (> (cell-ref c) 10) 

(exit (primop cell-ref c)) 
(jump))))) 

⇒ 11 

As one of Ben’s grad students, your job is to write the denotational semantics for FLK! with his new 
looping functionality. Ben has already revised the domain equations for you: 

j ∈ Jumpcont = Cmdcont 
x ∈ Exitcont = Expcont 

He’s also changed the signature of the E meaning function so that every expression is evaluated with 
both a jump and an exit continuation: 

E : Exp → Environment → Jumpcont → Exitcont → Expcont → Cmdcont 

Ben did give you the meaning function clause for E [(jump) ] for reference. 

E [(jump) ] = λejxk . j 

a.	 [10 points] Extend the meaning function in the FLK! Standard Semantics as given in Appendix B to 
include E [(loop E) ], given the new domains. 

b. [10 points] Define the meaning function clause for E [(exit E) ]. 

c. [10 points] Show that (loop (jump)) is equivalent to bottom. 
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A An Operational Semantics for FLK


E ∈ Exp 
L ∈ Lit 
I ∈ Identifier 

B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . ., -2, -1, 0, 1, 2, . . .}
O ∈ Primop = ; ; Defined by standard library. 
V ∈ Value = {#u} ∪ Boollit ∪ Intlit 

∪ {(symbol I)} ∪ {(proc I E)} ∪ {(pair E1 E2)} 

E ::= L [Literal] 
| I [Variable Reference] 
| (primop Oname Earg *) [Primitive Application] 
| (proc Iformal Ebody) [Abstraction] 
| (call Eoperator Eoperand) [Application] 
| (if Etest Econsequent Ealternate) [Branch] 
| (pair Eleft Eright) [Pairing] 
| (rec Ivar Ebody) [Recursion] 

L ::= #u [Unit Literal] 
| B [Boolean Literal] 
| N [Integer Literal] 
| (symbol I) [Symbolic Literal] 

Figure 1: An s-expression grammar for FLK 
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(call (proc I E1) E2) ⇒ [E2/I]E1 [call-apply] 

E1 ⇒ E1 
� 

(call E1 E2) ⇒ (call E1 
� E2) 

[call-operator] 

(if #t E1 E2) ⇒ E1 [if-true] 

(if #f E1 E2) ⇒ E2 [if-false] 

E1 ⇒ E1 
� 

(if E1 E2 E3) ⇒ (if E1 
� E2 E3) 

[if-test] 

(rec I E) ⇒ [(rec I E)/I]E [rec] 

E ⇒ E� 

(primop O E) ⇒ (primop O E�) [unary-arg] 

E1 ⇒ E1 
� 

(primop O E1 E2) ⇒ (primop O E1 
� E2) 

[binary-arg-1] 

E2 ⇒ E2 
� 

(primop O V E2) ⇒ (primop O V E2 
�) 

[binary-arg-2] 

Figure 2: A partial set of FLK rewrite rules 
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B Standard Semantics of FLK!


v ∈ Value = Unit + Bool + Int + Sym + Pair + Procedure + Location 

k ∈ Expcont = Value → Cmdcont 
γ ∈	 Cmdcont = Store → Answer 

Answer = (Value + Error)⊥ 
Error = Sym 

p ∈ Procedure = Denotable → Expcont → Cmdcont 
d ∈ Denotable = Value 

e ∈ Environment = Identifier → Binding 
β ∈ Binding = (Denotable + Unbound)⊥ 

Unbound = {unbound}
s ∈ Store = Location → Assignment 
l ∈ Location = Nat 

Assignment = (Storable + Unassigned)⊥ 
σ ∈ Storable = Value 

Unassigned = {unassigned} 

top-level-cont : Expcont 
= λv . λs . (Value �→Answer v) 

error-cont : Error → Cmdcont 
= λy . λs . (Error �→Answer y) 

empty-env : Environment = λI . (Unbound �→Binding unbound) 

test-boolean : (Bool → Cmdcont) → Expcont 
= λf . (λv .	 matching v 

� (Bool �→Value b) ] (f b) 
� else (error-cont non-boolean) 
endmatching ) 

Similarly for:

test-procedure : (Procedure → Cmdcont) → Expcont

test-location : (Location → Cmdcont) → Expcont

etc.


ensure-bound : Binding → Expcont → Cmdcont

= λβ k .	 matching β 

� (Denotable �→Binding v) ] (k v) 
� (Unbound �→Binding unbound) ] (error-cont unbound-variable) 
endmatching 

Similarly for:

ensure-assigned : Assignment → Expcont → Cmdcont


Figure 3: Semantic algebras for standard semantics of strict CBV FLK!. 
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same-location? : Location → Location → Bool = λl1l2 . (l1 =Nat l2) 
next-location : Location → Location = λl . (l +Nat 1) 

empty-store : Store = λl . (Unassigned �→Assignment unassigned) 

fetch : Location → Store → Assignment = λls . (s l) 

assign : Location → Storable → Store → Store 
= λl1σ s . λl2 .	 if (same-location? l1 l2) 

then (Storable �→Assignment σ) 
else (fetch l2 s) 

fresh-loc : Store → Location = λs . (first-fresh s 0) 

first-fresh : Store → Location → Location 
= λsl .	 matching (fetch l s) 

� (Unassigned �→Assignment unassigned) ] l 
� else (first-fresh s (next-location l)) 
endmatching 

Figure 4: Store helper functions for standard semantics of strict CBV FLK!. 
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T L : Exp → Answer

E : Exp → Environment → Expcont → Cmdcont

L : Lit → Value ; Defined as usual 

T L [E ] = E [E ] empty-env top-level-cont empty-store 

E [L ] = λek . k L [L ] 

E [I ] = λek . ensure-bound (lookup e I) k 

E [(proc I E) ] = λek . k (Procedure �→Value (λdk � . E [E ] [I : d]e k �)) 

E [(call E1 E2) ] = λek . E [E1 ] e (test-procedure (λp . E [E2 ] e (λv . p v k))) 

E [(if E1 E2 E3) ] = 
λek . E [E1 ] e (test-boolean (λb . if b then E [E2 ] e k else E [E3 ] e k)) 

E [(pair E1 E2) ] = λek . E [E1 ] e (λv1 . E [E2 ] e (λv2 . k (Pair �→Value �v1, v2�))) 

E [(cell E) ] = λek . E [E ] e (λvs . k	 (Location �→Value (fresh-loc s)) 
(assign (fresh-loc s) v s)) 

E [(begin E1 E2) ] = λek . E [E1 ] e (λvignore . E [E2 ] e k) 

E [(primop cell-ref E) ] = λek . E [E ] e (test-location (λls . ensure-assigned (fetch l s) k s)) 

E [(primop cell-set! E1 E2) ] 
= λek . E [E1 ] e (test-location (λl . E [E2 ] e (λvs . k (Unit �→Value unit) (assign l v s)))) 

E [(rec I E) ] = λeks . let f = fixAnswer (λa . E [E ] [I : (extract-value a)] e top-level-cont s) 
matching f 
� (Value �→Answer v) ] E [E ] [I : v] e k s 
� else f 
endmatching 

extract-value : Answer → Binding 
= λa . matching a 

� (Value �→Expressible v) ] (Denotable �→Binding v) 
� else ⊥Binding 
endmatching 

Figure 5: Valuation clauses for standard semantics of strict CBV FLK!. 

10 



Midterm Solutions
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Problem 1: The Two Game [10 points] 

Indicate whether each of the following expressions in the specified FL language-variant evaluates to the 
number two (2). 

a. [2 points] Dynamically-scoped Call-By-Name FL 

(let ((foo (let ((a 5)) 
(lambda (x) (- a x))))) 

(let ((b 3)) 
(foo b))) 

Solution: No, the result is error: a is undefined. 

b. [2 points] Statically-scoped Call-By-Reference FLAVAR! 

(let ((x 0) 
(foo (lambda (y z) 

(begin (set! y 2) 
(/ 4 z))))) 

(foo x x)) 

Solution: Yes, aliasing allows us to use multiple names for the same location in the store. 

c. [2 points] Statically-scoped Call-By-Value FL 

(let ((foo (proc x (rec x x))) 
(bar (proc y 2))) 

(bar foo)) 

Solution: Yes, even in Call-By-Value we don’t evaluate the body of a procedure until it’s called. 

d. [2 points] Statically-scoped Call-By-Value FLK! (with label and jump) 

(label bar 
(* 2 (label foo 

(jump foo (jump bar 1))))) 

Solution: No, (jump bar 1) passes 1 directly to the label bar, so the result is 1. 

e. [2 points] Dynamically-scoped Call-By-Value FL 

(let ((x 1)) 
(let ((f (lambda () x)) 

(g (lambda (h) (h)))) 
(let ((x 2)) 

(g f)))) 

Solution: Yes, procedure f gets the value 2 for the free variable x from the dynamic environment. 
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Problem 2: Operational Semantics [30 points] 

Louis Reasoner has an idea for a new FLK command, (terminate E1 E2). If either E1 or E2 terminates 
with a value or an error, (terminate E1 E2) will also terminate with a value or an error. In evaluating 
terminate, we run one expression for one step, then run the other expression for one step, and so on. Louis 
initially worked out a few examples of how his new construct would work: 

(terminate 1 2) ⇒ 1 or 2 (implementation dependent)

(terminate 2 (rec x x)) ⇒ 2

(terminate 1 (call 3 0)) ⇒ 1 or error: can’t apply non-procedure (implementation dependent)

(terminate (rec x x) (/ 3 0)) ⇒ error: divide by zero

(terminate (rec x x) (rec x x)) ⇒ ⊥


Louis is really excited about the terminate construct. His old implementation of FLK required him 
to reboot any time his program ran into an infinite loop. Although he hasn’t solved the halting problem, 
now he can guarantee not to have to reboot (excepting, of course, when his new-fangled operating system 
crashes) by testing his programs with terminate and his new (timer N ) construct. 

Louis defined the following transition rule(s) for timer: 

(timer N1) ⇒ (timer N2) 
where N1> 1 [timer-countdown] 

and N2 = N1 − 1 

(timer 1) ⇒ #u [timer] 

Louis can now use the terminate construct to run his program might-go-infinite for exactly 1000 steps 
(where we consider each transition to be one step). The following expression will return the result of might-
go-infinite if it completes in under 1000 steps, otherwise it returns #u. 

(terminate (timer 1000) might-go-infinite ) 

Unfortunately, Louis set off for Hawaii before he was able to extend the FL Operational Semantics to 
include terminate. In his absence, you are asked to finish it up. 

a. [15 points] Give the transition rules for terminate. 

Solution: 

E1 ⇒ E� 
1

1) 
[terminate-progress]

(terminate E1 E2) ⇒ (terminate E2 E
� 

(terminate V E) ⇒ V [terminate-with-value] 

b. [5 points] Are your rules confluent? 

Solution: Yes, the rules are confluent. 

c. [10 points] Show how the following expression would be evaluated using the rules above: 

(terminate (call (proc x (primop + x 2)) 5) 
(if (> 3 4) 

(rec x x) 
(proc y 1))) 
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Solution: 

⇒	 (terminate (if (> 3 4) 
(rec x x) 
(proc y 1)) 

(primop + 5 2)) 

⇒ (terminate (primop + 5 2) 
(if	 false 

(rec x x) 
(proc y 1))) 

⇒	 (terminate (if false 
(rec x x) 
(proc y 1)) 

7) 

⇒	 (terminate 7 
(proc y 1)) 

⇒ 7 
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Problem 3: Denotational Semantics and Mutation [30 points] 

Alyssa P. Hacker has decided to add a new feature to FLK!: the ability to undo store modifications. She 
introduces a single new form into FLK! called undo!: 

(undo!) ; undo the last mutation to the store 

Here is an example of how undo! can be used to undo a cell-set! using FL! sugar: 

(let ((c (cell 0))) 
(begin 

(primop cell-set! c 1) 
(undo!) 
(primop cell-ref c))) 

⇒ 0 

Before Alyssa is called away to testify at a large antitrust trial, she managed to update the Standard 
Semantics as follows: 

Cmdcont = StoreStack → Answer 
∗ z ∈ StoreStack = Store 

T L [E ] = E [E ] empty-env top-level-cont empty-store.[]Store 

You can assume all of the semantic algebra helper functions that deal in CmdCont have been prop
erly updated. Store operations same-location?, next-location, empty-store, fetch, assign, fresh-loc, and first-fresh 
remain unchanged. 

a.	 [10 points] As she was running out the door, Alyssa mumbled something about the dangers of undo
ing cell creations using undo!. Give an example of a program that would generate a run-time error if 
Alyssa permits the cell form to be undone. 

Solution: 

(let ((c (cell 0))) 
(begin 

(undo!) 
(primop cell-ref c))) 

b.	 [10 points] Dissatisfied with the possibility of run-time errors, Alyssa faxes you a revised meaning 
function for cell and assures you that we can prevent undos to cell creations. 

E [(primop cell E) ] = λek . E [E ] e (λvz . matching z 
� s.z1 ] (k (Location �→Value (fresh-loc s)) 

(assign-to-all (fresh-loc s) v z)) 
endmatching ) 

assign-to-all : Location → Storable → StoreStack → StoreStack 
= fixLocation → Storable → StoreStack → StoreStack λf . (λlσz . matching z 

� []Store ] []Store 

� s.z1 ] (assign l σ s). (f l σ z1) 
endmatching ) 

Provide a revised meaning function for E [(primop cell-set! E1 E2) ]. 
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Solution: 

E [(primop cell-set! E1 E2) ] 
= λek . E [E1 ] e (test-location (λl . E [E2 ] e (λvz .	 matching z 

� s.z1 ] (k (Unit �→Value unit) (assign l v s).z) 
endmatching ))) 

c.	 [10 points] Also provide a revised meaning function for Alyssa’s new undo! form, E [undo!) ]. Her 
notes specified that even in the absense of cell-set!’s, undo! should not produce any errors. 

Solution: 

E [(primop undo!) ] = λekz .	 matching z 
� s.[]Store ] (k (Unit �→Value unit) s.[]Store) 
� s.z1 ] (k (Unit �→Value unit) z1) 
endmatching 
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Problem 4: Denotational Semantics: Control [30 points] 

Ben Bitdiddle is now ensconced in a major research university where he’s been fooling around with loops 
in FLK!. Ben has decided to add the following features to FLK!: 

E ::= . . . all FLK! forms . . . | (loop E) | (exit E) | (jump) 

Here’s an example of how Ben’s new loop construct would work: 

(let ((c (cell 0))) 
(loop 

(begin 
(primop cell-set! c (+ (primop cell-ref c) 1)) 
(if (> (cell-ref c) 10) 

(exit (primop cell-ref c)) 
(jump))))) 

⇒ 11 

As one of Ben’s grad students, your job is to write the denotational semantics for FLK! with his new 
looping functionality. Ben has already revised the domain equations for you: 

j ∈ Jumpcont = Cmdcont 
x ∈ Exitcont = Expcont 

He’s also changed the signature of the E meaning function so that every expression is evaluated with 
both a jump and an exit continuation: 

E : Exp → Environment → Jumpcont → Exitcont → Expcont → Cmdcont 

Ben did give you the meaning function clause for E [(jump) ] for reference. 

E [(jump) ] = λejxk . j 

a.	 [10 points] Extend the meaning function in the FLK! Standard Semantics to include E [(loop E) ], 
given the new domains. 

Solution: 
E [(loop E) ] = λejxk . (fixCmdcont (λj1 . (E [E ] e j1 k k))) 

b. [10 points] Define the meaning function clause for E [(exit E) ]. 

Solution: 
E [(exit E) ] = λejxk . E [E ] e j x x 

c. [10 points] Show that (loop (jump)) is equivalent to bottom. 

Solution: 
E [(loop (jump)) ] = λejxk . (fix (λj1 . (E [[(jump)]] e j1 k k))) 

⇒ 
E [(loop (jump)) ] = λejxk . (fix (λj1 . ((λejxk . j) e j1 k k))) 

⇒ 
E [(loop (jump)) ] = λejxk . (fix (λj1 . j1)) 

⇒ 
E [(loop (jump)) ] = ⊥ 
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