6.821 Programming Languages Fall 2002 Handout

MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Compvter Science

2000 Midterm

Problem 1: Short Answer [20 points]

Evaluate the following expressions in the given models.

a. [5 points] static scoping, call by value

Solution: error (divide by 0)

b. [5 points] dynamic scoping, call by value

Solution: \perp (infinite loop)

c. [5 points] static scoping, call by name

Solution: 25

d. [5 points] dynamic scoping, call by name

Solution: 15

Problem 2: Operational Semantics: Postfix + {sdup} [20 points]

Alyssa P. Hacker extended the PostFix language with a new command called sdup: smart dup. This allows us to compute $square(x) = x^2$ without hurting the termination property of PostFix programs. The informal semantics for sdup is as follows: duplicate the top of the stack if it is a number or a command sequence that doesn't contain sdup; otherwise, report an error.

Formally, the operational semantics has been extended with the following two transition rules:

$$\langle \text{sdup} . Q_{rest}, N . S \rangle \Rightarrow \langle Q_{rest}, N . N . S \rangle$$
 [sdup-numeral]

 $contains_sdup : Command^* \rightarrow$ Bool is a helper function that takes a sequence of commands and checks whether it contains sdup or not (yes, $contains_sdup$ handles even nested sequences of commands)

As a new graduate student in Alyssa's AHRG (Advanced Hacking Research Group), you were assigned to give a proof that all PostFix + {sdup} programs terminate. However, you are not alone! Alyssa already took care of most of the mathematical weaponry:

Consider the product domain $P = Nat \times Nat$ (as usual, Nat is the set of natural numbers, starting with 0). On this domain, we define the relation $<_P$ as follows:

Definition 1 (lexicographic order) $\langle a_1, b_1 \rangle <_P \langle a_2, b_2 \rangle$ *iff:*

- a. $a_1 < a_2$ or
- b. $a_1 = a_2$ and $b_1 < b_2$.

E.g. $(3, 10000) <_P (4, 0), (5, 2) <_P (5, 3).$

Definition 2 A strictly decreasing chain in P is a finite or infinite sequence of elements p_1, p_2, \ldots such that $p_i \in P, \forall i \text{ and } p_{i+1} <_P p_i, \forall i$.

After a long struggle, Alyssa proved the following lemma for you:

Lemma 1 There is no infinite strictly decreasing chain in *P*.

Give a rigorous proof that each PostFix + {sdup} program terminates by using a cleverly defined energy function \mathcal{ES}_{config} . *Hint:* Each transition of Postfix reduces the energy function \mathcal{E}_{config} you saw in class. Try to see what is reduced by the two new rules, and how you can combine these two things into a single energy function.

Note: If you need to use some helper functions that are intuitively easy to describe but tedious to define (e.g. *contains_sdup*), just give an informal description of them.

Grading scheme:

- [10 points] \mathcal{ES}_{config} ;
- [10 points] Termination proof.

Solution:

Consider the following energy function:

$$\mathcal{ES}_{config}: \mathcal{C} \to Nat \times Nat = \lambda \langle Q, S \rangle$$
. $\langle sdup_count \llbracket \langle Q, S \rangle \rrbracket, \mathcal{E}_{config} \llbracket \langle Q, S \rangle \rrbracket$

where $sdup_count$ is a helper function that computes the number of times sdup appears in a configuration and \mathcal{E}_{config} is the energy function shown in class.

Let's first prove that for any transition $c_{old} \Rightarrow c_{new}$, $\mathcal{ES}_{config}[c_{new}] <_P \mathcal{ES}_{config}[c_{old}]$.

Old transitions: None of them introduces new sdup commands but they all strictly decrease \mathcal{E}_{config} . So, the first component of \mathcal{ES}_{config} doesn't increase and the second one strictly decreases which implies $\mathcal{ES}_{config}[c_{new}] <_P \mathcal{ES}_{config}[c_{old}]$.

New transitions: Each of the new sdup related rules "consumes" exactly one sdup: this is clearly true for [*dup-numeral*] and [*dup-sequence*] doesn't duplicate sequences containing sdup. So the first component of \mathcal{ES}_{config} is strictly decreased by these transitions which implies that no matter what happens with the second component (note that [*dup-sequence*] might actually increase it), $\mathcal{ES}_{config} [c_{new}] <_P \mathcal{ES}_{config} [c_{old}]$ for the new transitions too.

Suppose now for the sake of contradiction that there is some PostFix + {sdup} program with an infinite execution $c_1 \Rightarrow c_2 \Rightarrow c_3 \Rightarrow \ldots$. This implies $\mathcal{ES}_{config}[c_2] <_P \mathcal{ES}_{config}[c_1], \mathcal{ES}_{config}[c_3] <_P \mathcal{ES}_{config}[c_2], \ldots$ and we've just constructed an infinite strictly decreasing chain in P! Contradiction with Lemma 1.

Problem 3: State: FLK! + {undo-once!} [30 points]

Ben Bitdiddle introduced a new undo-once! instruction to roll the store back one operation at a time. Informally speaking, undo-once! undoes the last store operation (cell or cell-set!). If there is no store operation to undo, undo-once! does nothing.

 E
 ::=
 ...
 [Classic FLK! expressions]

 |
 (undo-once!)
 [Undo last store operation]

Initially, Ben thought of modifying the meaning function to use a stack of stores (as it did in the fall-98 midterm), but the implementors refused to work on such an idea and threatened to quite Ben's company *en masse*. So, Ben had to turn to a more efficient idea: maintain the current store and a stack of undo functions. An undo function takes a store and reverses a specific store operation (one done with cell or cell-set!) to obtain the store before the operation.

Pursuing this idea, Ben modified the Cmdcont semantic domain and the top level function as follows:

 $\begin{array}{l} Cmdcont = Store \rightarrow StoreTransformStack \rightarrow Expressible \\ h \in StoreTransformStack = StoreTransform^{*} \\ t \in StoreTransform = Store \rightarrow Store \\ \mathcal{TL}\llbracket E \rrbracket = (\ \mathcal{E}\llbracket E \rrbracket \ empty\-env \ top\-level\-cont \ empty\-store \ [\]_{StoreTransform}) \end{array}$

As each store operation (cell or cell-set!) consists of assigning a Storable to a Location, it can be reversed by putting the old Assignment into that Location. Ben even wrote the following undo function producer for you:

make-undofun : Location \rightarrow Assignment \rightarrow StoreTransform $= \lambda l \alpha \cdot \lambda s \cdot (assign' \ l \ \alpha \ s)$

assign' is a function similar to assign which allows us to assign even unassigned:

assign': Location \rightarrow Assignment \rightarrow Store \rightarrow Store = $\lambda l_1 \alpha s \cdot \lambda l_2 \cdot$ if (same-location? $l_1 \ l_2$) then α else (fetch $l_2 \ s$) fi

If a store operation modified location *l*, the undo function for it can be obtained by calling *make-undofun* on *l* and the old assignment for *l*. All the undo functions that you write in this problem must be obtained by calling *make-undofun* with the appropriate arguments.

Now, guess what?, Ben went away to deliver a better Internet and grab some more billions, and you were assigned to finish his job.

a. [10 points] Write the meaning function clause for $\mathcal{E}[(undo-once!)]$.

```
Solution:

\mathcal{E}[\![(undo-once!)]\!] = \lambda eksh \cdot matching h
 > t \cdot h_{rest} |\![ (k (Unit \mapsto Value unit) (t s) h_{rest}) 
 > []_{StoreTransform} |\!] (k (Unit \mapsto Value unit) s h) 
endmatching
```

We specially treat the case of an enpty stack of undo functions: when there is nothing to undo, undo-once! does nothing.

b. [10 points] Write a revised version for $\mathcal{E}[[(\text{primop cell-set}! E_1 E_2)]]$.

Solution:

$$\begin{split} \mathcal{E}[\![(\texttt{primop cell-set}! \ E_1 \ E_2)]\!] &= \\ \lambda ek . \ (\mathcal{E}[\![E_1]\!] \ e \ (\textit{test-location} \ (\lambda l \ (\mathcal{E}[\![E_2]\!] \ e \ (\lambda vsh \ (k \ (\textit{Unit} \mapsto \textit{Value unit}) \ (assign \ l \ v \ s \) \ (make-undofun \ l \ (\textit{fetch} \ l \ s) \).h \))))))) \end{split}$$

The store that is passed to k is, as previously, the store obtained by assigning v to location l; we add to the head of the stack of store transformers an undo function that restores the old assignment for l.

c. [10 points] Write a revised version for $\mathcal{E}[(cell E)]$. *Note:* we want to be able to undo even cell creation operations. That is, the following program must end with an error:

```
(let ((c (cell 0)))
  (begin
      (undo-once!)
      (primop cell-ref c)))
```

```
Solution:
```

```
 \begin{split} \mathcal{E}\llbracket(\texttt{cell } E)\rrbracket &= \\ \lambda ek . \ (\mathcal{E}\llbracket E\rrbracket \ e \ (\lambda vsh \ . \ ((\lambda l \ . \ (k \ (\texttt{Location} \mapsto \texttt{Value } l) \\ (assign \ l \ v \ s) \\ (make-undofun \ l \ (\texttt{Unassigned} \mapsto \texttt{Assignment } unassigned)) \ . h \ )) \\ (fresh-loc \ s) \ )))) \end{split}
```

Undoing a cell allocation is done by assigning back *unassigned* to the cell location *l*. Now, that cell is free to be allocated again! Calling $(\lambda l \dots)$ on (*fresh-loc s*) is just a trick to avoid us writing (*fresh-loc s*) three times (it's like the desugaring for let in FL).

Problem 4: Denotational Semantics: Control [30 points]

Sam Antics of eFLK.com wants to cash in on the election year media bonanza by introducing a new feature into standard FLK!:

$(\texttt{elect} \ \texttt{E}_{\texttt{pres}} \ \texttt{E}_{\texttt{vp}})$;	evaluates to E_{pres} unless $impeach$
	;	is evaluated within E_{pres} , in which
	;	case evaluates to $E_{vp}.$ If $impeach$ is
	;	evaluated within E_{vp} , signals an error.
(reelect)	;	if evaluated within E_{pres} of $(elect \ E_{pres} \ E_{vp})$,
	;	goes back to the beginning of elect.
	;	otherwise, signals an error.
(impeach)	;	if evaluated within E_{pres} of $(elect \ E_{pres} \ E_{vp})$,
	;	causes the expression to evaluate to $E_{vp}.$
	;	otherwise, signals an error.

For example:

You are hired by eFLK.com to modify the standard denotational semantics of FLK! to produce *FLK*! 2000 *Presidential Edition (TM)*. To get you started, Sam tells you that he has added the following domains:

 $r \in Prescont = Cmdcont$ $i \in Vpcont = Cmdcont$

He also changed the signature of the meaning function:

 $\mathcal{E}: Exp \rightarrow Environment \rightarrow Prescont \rightarrow Vpcont \rightarrow Expcont \rightarrow Cmdcont$

a. [9 points] give the meaning function for (elect $E_{pres} E_{vp}$).

Solution:

$$\begin{split} \mathcal{E}[\![(\texttt{elect } \mathbb{E}_{\texttt{pres}} \ \mathbb{E}_{\texttt{vp}})]\!] &= \\ \lambda erik . \ (\texttt{fix}_{\texttt{Cmdcont}} \left(\lambda r_1 . \ \mathcal{E}[\![E_{pres}]\!] \ e \ r_1 \left(\lambda s . \ \mathcal{E}[\![E_{vp}]\!] \ e \\ & (\texttt{error-cont cannot-reelect-vp}) \\ & (\texttt{error-cont cannot-impeach-vp}) \ k) \ k)) \end{split}$$

b. [7 points] give the meaning function for (reelect).

Solution:

 $\mathcal{E}[(\texttt{reelect})] = \lambda erik . r$

c. [7 points] give the meaning function for (impeach).

Solution:

 $\mathcal{E}[(\texttt{impeach})] = \lambda erik . i$

d. [7 points] using the meaning functions you defined, show that (elect (reelect) 1) is equivalent to \perp .

Solution:

```
 \begin{split} \mathcal{E}[\![(\texttt{elect} (\texttt{reelect}) \ 1)]\!] &= \\ \lambda erik \ . \ (\texttt{fix}_{\texttt{Cmdcont}} (\lambda r_1 \ . \ \mathcal{E}[\![(reelect)]\!] \ e \ r_1 \ (\lambda s \ . \ \mathcal{E}[\![1]\!] \ e \\ & (\texttt{error-cont cannot-reelect-vp}) \\ & (\texttt{error-cont cannot-impeach-vp}) \ k) \ k)) \end{split}
```

 \Rightarrow

```
 \mathcal{E}\llbracket(\texttt{elect} (\texttt{reelect}) \ \texttt{1})\rrbracket = \\ \lambda erik . (\texttt{fix}_{\texttt{Cmdcont}} (\lambda r_1 . (\lambda erik . r) e r_1 (\lambda s . \mathcal{E}\llbracket\texttt{1}]] e \\ (\texttt{error-cont cannot-reelect-vp})
```

(error-cont cannot-impeach-vp) k) k))

 \Rightarrow

```
\mathcal{E}[\![(\texttt{elect} (\texttt{reelect}) \ \texttt{1})]\!] = \lambda erik . \ (\texttt{fix}_{\texttt{Cmdcont}} (\lambda r_1 . \ r_1))
```

 \Rightarrow

 $\mathcal{E}[\![(\texttt{elect} (\texttt{reelect}) \ 1)]\!] = \bot$