
6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

2002 Midterm Solutions

Problem 1: Short Answer [18 points]

Evaluate the following expressions in the given models. If the expression evaluates to an error, say what
kind of error it is.

(let ((x 1))
(let ((f (lambda (y) (+ x y))))

(let ((x 2))
(f 1))))

a. [2 points] static scoping, call by value

Solution: 2

b. [2 points] dynamic scoping, call by value

Solution: 3

(let ((f (lambda () 1))
(g (lambda () (f))))

(let ((f (lambda () 2)))
(g)))

c. [2 points] static scoping, call by value

Solution: error, f is not bound

d. [2 points] dynamic scoping, call by name

Solution: 2

(let ((x 0))
(let ((f (lambda (y) (/ y x))))

(let ((x 1))
(set! f (lambda (y) (/ y x))))

(let ((x 2))
(f x))))

e. [2 points] static scoping, call by value

Solution: 2

f. [2 points] dynamic scoping, call by value

Solution: 1

(let ((x (/ 1 0))
(y 0))

(let ((z (begin (set! y (+ y 1)) 5)))
((lambda (x) (x (x x)))
(lambda (x) (+ z y z y)))))

g. [2 points] static scoping, call by name

Solution: 13

h. [2 points] static scoping, call by value

Solution: error, divide by 0

i. [2 points] static scoping, call by need

Solution: 12

2

Problem 2: Operational Semantics: [18 points]

Ben Bitdiddle’s company, which sells commercial PostFix implementations, has been hard-hit by the In
ternet stock bust and has sent him off to MIT to bring back new commercializable technology. Ben Bitdiddle
has been learning about functional programming, and while he still prefers PostFix, he is intrigued by the
notion of currying. He proposes two new PostFix constructs that permit creating and taking apart PostFix
procedures. The constructs are called pack and unpack.

•	 pack expects the first value on the stack to be a number n, and it expects there to be at least n more
values on the stack. It packages together the next n values on the stack, cn, . . . , c1, as a command
sequence C = (c1 . . . cn) and pushes C on the stack.

•	 unpack expects the first value on the stack to be a command sequence C = (c1 . . . cn). It pushes
c1, . . . , cn, n on the stack in that order.

If the preconditions are not met, the operational semantics gets stuck.
unpack permits the PostFix stack to contain commands, which was previously impossible. For example,

consider the following PostFix program:

(N3 N2 N1 (add add) exec) ⇒ N1 + N2 + N3

We can think of (add add) as a procedure of three arguments that adds N1, N2, and N3. Using unpack
and pack, we can write a currying procedure that takes a three-argument procedure, N1, and N2, and
outputs a procedure that takes one argument N3 and outputs N1 + N2 + N3. The currying procedure is
(unpack 2 add pack) and it works as follows:

(N2 N1 (add add) (unpack 2 add pack) exec) ⇒ (N2 N1 add add)

Ben’s company has built proprietary optimization technology that can convert this command sequence to
(N4 add), where N4 = N1 + N2. Together, these two innovations promise a remarkable improvement in
PostFix efficiency.

a. [5 points] Give a rewrite rule for unpack.

Solution:

�unpack. Q, (V1 V2 ... Vn). S� ⇒ �Q, n . Vn...V1 . S� [unpack]

b. [5 points] Give a rewrite rule for pack.

Solution:

�pack. Q, n . Vn...V1 . S� ⇒ �Q, (V1 V2 ... Vn). S� [pack]

c.	 [8 points] In addition to performing partial evaluation, Ben would like to be able to reuse its results;
after all, procedures that can only be called once are of limited use. Ben proposes to add a restricted
form of dup to PostFix+{unpack, pack}; the restricted dup may only be used immediately after pack.
Do all such programs terminate? Argue briefly: give either an energy function or a counterexample.

Solution: PostFix+{unpack, pack, duprestricted} programs may not terminate. Recall that the canonical
non-terminating PostFix+dup program is (dup exec) dup exec. Notice that unpack and pack are
duals. The following program does not terminate.

(unpack pack dup exec) unpack pack dup exec

One can also write unrestricted dup in terms of restricted dup:

dup = 1 pack dup unpack pop swap unpack pop

3

[]
[]

[]

[]

Problem 3: Denotational Semantics: [34 points]

Ben Bitdiddle enjoys the convenience of short-circuiting operators and has a proposal for making them
even more powerful.

A standard short-circuiting logical operator evaluates only as many of its operands as necessary; it
evaluates its arguments in left-to-right order, stopping as soon as it evaluates an argument that determines
the value of the entire expression. For instance, if and is a short-circuiting operator, then the following
program evaluates to #f without raising an error:

(and #f (= 0 (/ 1 0)))

However, reversing the order of the expressions leads to an error:

(and (= 0 (/ 1 0)) #f)

Ben Bitdiddle reasons that the second expression, too, should evaluate to #f. After all, one of the
operands evaluates to #f, and that determines the value of the entire expression. He proposes a very-short
circuiting operator nd-and (non-deterministic and) such that if either operand evaluates to false, then only
that operand is evaluated; otherwise, both operands are evaluated. His goals are:

•	 The expression errs or infinite-loops only if at least one of the operands does, and the other expression
does not evaluate to #f. (Hint: infinite loops, errors, and concurrency are not the main point of this
problem.)

•	 The value of the entire expression is the and of all the visibly evaluated operands, where a visibly
executed operand is one whose side effects have been performed on the resulting store.

•	 The entire expression evaluates to #t if and only if both operands are visibly evaluated (because both
operands must be evaluated to achieve that result).

• The entire expression evaluates to #f if and only if exactly one expression is visibly evaluated.

Alyssa P. Hacker does not believe Ben’s goals are achievable. She says she can satisfy the first two goals
plus either of the last two goals, but not all four goals simultaneously.

a.	 [6 points] Informally describe the operational semantics for one of the possibilities for nd-and that
satisfies Alyssa’s claim.

Solution: There are multiple solutions to this problem. Here is one of them.

Let s0 be the initial store.

Evaluate E1 in s0, giving �v, s1�. If v is false, return �v, s1�.

Otherwise, evaluate E2 in s0, giving �v, s2�. If v is false, return �v, s2�.

Otherwise, evaluate E2 in s1, giving �v, s3�. Return �v, s3�.

(This might be false, even though both operands have been evaluated.)

b. [8 points] What is E [[(nd-and E1 E2)]] for the version of nd-and that you described above?

Solution:

E [(nd-and E1 E2)]
= λeks0 . E [E1] e (λv1 . if ¬v1

then (k false)
else E [E2] e (λv2 . if ¬v2

then (k false)
else E [E1] e k)

s0)
s0

4

[]
[]

[]

[]

[]

Alternately, with explicit stores:

E [(nd-and E1 E2)]
= λeks0 . E [E1] e (λv1s1 . if ¬v1

then (k false s1)
else E [E2] e (λv2s2 . if ¬v2

then (k false s2)
else E [E1] e k s2)

s0)
s0

c. [4 points] Can nd-or (nondeterministic or) be defined in terms of nd-and? Explain briefly.

Solution: Yes.

Dexp [(nd-or E1 E2)] = (not (nd-and (not E1) (not E2)))

Because not preserves nontermination and errors, the semantics are as desired: if either E1 or E2

evaluates to true, the other is not evaluated.

d. [3 points] What does the following FLAVAR! program evaluate to?

(let ((a 2))
(let ((and-result (nd-and (= a 3)

(begin (set! a 3) #t))))
(list and-result a)))

Solution: E1 evaluates to false, and E2 evaluates to true. The entire expression evaluates to (#f 2).

e. [3 points] What does the following FLAVAR! program evaluate to?

(let ((a 2))
(let ((and-result (nd-and (= a 2)

(begin (set! a 3) #t))))
(list and-result a)))

Solution: E1 in isolation evaluates to true, and E2 evaluates to true. The entire expression evaluates
to either (#t 3) or (#f 3), depending on the order of evaluation.

f.	 [6 points] Demonstrate that Alyssa’s assertion is correct. Given your semantics for nd-and, write an
nd-and expression that fails one of the last two constraints. The expression should either definitely
evaluate to #t, but with the side effects of just one of its arguments; or it should definitely evaluate to
#f, but with the side effects of both arguments.

Solution: This expression evaluates to false, but evaluates both arguments:

(let ((a #t) (b #t))
(nd-and (begin (set! b #f) a)

(begin (set! a #f) b)))

g. [4 points] Suggest a restriction (to FLAVAR!, FLK!, or nd-and) that achieves all of Ben’s goals.

Solution: Disallow uses of set!.

5

[]

[]
[]

[]
[]

Problem 4: Control [30 points]

After hearing that Ben Bitdiddle’s MIT experience led him to experiment with currying (Problem 2), the
president of Ben’s company exclaimed, “I won’t be caught selling buggy whips, curry combs, or other
horse products in the modern economy!” and sent Ben off to New Jersey to learn some more practical
programming constructs.

Ben noted that FLK! is missing the while loop, which is standard in other languages, and reasons that
adding it will reduce programmers’ resistance to FLK!.

Ben proposes three new constructs — while, continue, and break — to ensure that C programmers feel
at home programming in FLAVAR!. The command (while Econd Ebody Efinal) behaves as follows. If Econd

is true, then evaluate Ebody and loop back to re-evaluate the entire while form (starting with Econd again).
If Econd is false, then the value of the entire while expression is the result of evaluating Efinal.

Within Ebody , (continue) preempts execution of the smallest enclosing Ebody and returns to the top of
that loop.

Finally, (break E3) forces the entire while expression to terminate with the value E3 (without evaluat
ing Efinal).

Consider the following procedure:

(define f
(lambda (xval)

(let ((x (cell xval)))
(while (begin (cell-set! x (+ (cell-ref x) 1)) (< (cell-ref x) 0))

(begin (cell-set! x (+ (cell-ref x) 1))
(if (< (cell-ref x) 0)

(continue)
(break 42)))

(- (cell-ref! x) 1)))))

Evaluation proceeds as follows:

(f -10) ⇒ 42
(f -11) ⇒ -1

In order to provide a meaning for the new commands, we must change the meaning function E and add
a new domain:

E : Exp → Environment → Expcont → ContCont → BreakCont → Cmdcont
c ∈ ContCont = Expcont
b ∈ BreakCont = Expcont

a.	 [14 points] What is E [(while Econd Ebody Efinal)]?

Solution: Here is a version that re-evaluates the condition after (continue), and where (break) or
(continue) in Econd break out of the while form to which Econd belongs:

E [(while Econd Ebody Efinal)]
= λekcb . fixCmdcont λl . E [Econd] e (λv . if v

then E [Ebody] e (λv . l) (λv . l) k
else E [Efinal] e k c b)

(λv . l) k

Here is a version that does not re-evaluate the condition after (continue), and where (break) or
(continue) in Econd break out of a while form that encloses the one to which Econdbelongs:

6

[]
[]

[]
[]

[]

[]

[]

[] []

E [(while Econd Ebody Efinal)]
= λekcb . fixCmdcont λl . E [Econd] e (λv .	 if v

then fixCmdcont (λj . E [Ebody] e (λv . l) (λv . j) k)
else E [Efinal] e k c b)

c b

b. [8 points] What is E [(continue)]?

Solution: E [(continue)] = λekcb . (c unit)

c. [8 points] What is E [(break E)]?

Solution: E [(break E)] = λekcb . E [E] e b c b

7

