
6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

6.821 Jeopardy: The Home Version
The game that turns 6.821 into 6.82fun!

This is the home version of the 6.821 Jeopardy game played in class. It includes questions and answers
for all categories.

Round 1: Jeopardy

Dynamic Semantics

100 This parameter passing mechanism is indicated by the following transition rules:

�E 0, s� ⇒ �E0
� , s��

�(E0 E1), s� ⇒ �(E0
� E1), s��

�E1, s� ⇒ �E1
� , s��

�(V E1), s� ⇒ �(V E1
�), s��

�((lambda (I) Eb) V), s� ⇒ �[V/I]Eb, s�

200 This is the value of the following expression in a dynamically scoped version of FL:

(let ((make-sub (lambda (x)
(lambda (n) (- n x))))

(apply (lambda (f x) (f x))))
(let ((x 1))

(apply (make-sub 20) 300)))

300 In a version of FL! supporting label and jump, this is the value of the following expression.

(let ((r (cell 1)))
(let ((top (label x x)))

(if (> (cell-ref r) 10)
(cell-ref r)
(begin

(cell-set! r (* 2 (cell-ref r)))
(jump top)))))

400 In a language with termination semantics for dynamic exceptions, this is the value of:

(handle (err (y) (+ y 200))
(let ((f (lambda (x)

(+ (raise err x) 1000))))
(handle (err (z) (+ z 500))
(f 4))))

500 Suppose language L has a direct semantics with the following:

Procedure = Denotable* → Store → Result
E : Exp → Environment → Store → Result

2

If the language L is call-by-name, this is the definition of the Denotable domain.

Type Reconstruction

100 Can Hindley-Milner type reconstruction reconstruct a type for the following SCHEME/R expression?
Explain. (Give the type or explain why the algorithm cannot reconstruct one.)

(lambda (f)
(let ((g f))

(if (g #t) (g 1) (g 2))))

200 This is the type reconstructed for the following SCHEME/R expression.

(lambda (g f)
(lambda (x) (g (f x))))

300 Consider the following definition of the Y operator in SCHEME/R. Is its type reconstructible? Explain.

(define y
(lambda (g)

(let ((s (lambda (x) (g (x x)))))
(s s))))

400 List all of the following expressions that are reconstructible in SCHEME/R:

1. (letrec
((id (lambda (a) a))
(test (lambda ()

(if (id #t) (id 1) 2))))
(test))

2. (letrec ((id (lambda (a) a))
(test (lambda (y)

(if (id #t) y 2))))
(test (id 1)))

3. (letrec ((id (lambda (a) a))
(test (lambda (x y)

(if x y 2))))
(test (id #t) (id 1)))

500
This type schema is bound to x in the body of the following SCHEME/R expression.

(letrec ((x (lambda () (x))))
body)

Pragmatics

3

100 This compiler pass must precede closure conversion with flat environments, but need not precede
closure conversion with nested environments.

200 After CPS conversion, this is the syntactic form of the continuation for a tail call in the source program.

300 Suppose a language has the construct (value E) that evaluates E to a symbol, and returns the value
bound to that symbol. E.g.,

(let ((x (symbol a))
(a 3))

(value x))
; Value = 3

What change in the compiler would have to be made to environment representations in order to accomodate
this construct?

400 If a SCHEME/R program type checks, will the program resulting from CPS conversion also type check?
Explain.

500 What additional run-time support is needed for SCHEME/XSP’s plambda expression? Be specific.

Program Translations

100 Under this variable scoping mechanism for FL, the following desugaring is invalid.

(lambda (I1 I2) E)

⇒

(lambda (I1) (lambda (I2) E))

(Assume all applications of the procedure are appropriately modified.)

200 Is the following a safe (i.e., semantics-preserving) transformation in a strictly functional language?
Explain.

(if E1 E1 E2)

⇒

(let ((I1 E1)) (if I1 I1 E2))

300 Is the following desugaring valid in SCHEME/R? Explain.

(let ((I1 E1)) E2)

⇒

((lambda (I1) E2) E1)

400 This problem is encountered in using the following two rules in a simplifier for PostFix+{dup}.

(Q) . exec . S ==> Q @ S

V . dup . S ==> V . V . S

500 Is the following a valid transformation in every functional language? Explain.

(let ((I1 E1)) E2) ⇒ [E1/I1]E2

4

Trivia

100 This OODL (Object Oriented Dynamic Langauge), once backed by Apple Computer, is noted for its
sophisticated run-time memory management and functional style, including first class and anonymous
functions.

200 This is widely recognized as the first object-oriented language.

300 Alan Perlis says that syntactic sugar causes this.

400 This language designer once quipped that he could be called both by name and by value.

500 This one of the following is not the title or subtitle of a Steele & Sussman Scheme paper.

a. Lambda the Ultimate Declarative

b. Lambda the Ultimate GOTO

c. Lambda the Ultimate Imperative

d. Lambda the Ultimate Objective

e. Lambda the Ultimate Opcode

5

[]
[] []

Round 2: Double Jeopardy

Semantics Fundamentals

200 Suppose domain A has 4 elements and domain B has 3 elements. There are this many set-theoretic
functions from A to B.

400 Suppose Bool = {true, false}. There are this many elements in the domain:

(Bool⊥ × (Bool⊥ + Bool⊥))⊥

600 What is wrong with the following denotational semantics for a language that supports recursion?

e ∈ Environment = Identifier → (Expressible + Unbound)

extend-env : Environment → Identifier → Expressible → Environment

E : Exp → Environment → (Expressible + Error)

E [(rec I E)] =

λe0 . (E [E] (fixEnvironment(λe1 . (extend-env e0 I (E [E] e1)))))

800 Suppose b ∈ Bool⊥, f ∈ Bool⊥ → Bool⊥, and or is strict boolean disjunction. The following functional
has this many fixed points.

λf . λb . (or b (f b))

1000 Consider the following domains E and F :

d
|

a b c
\ / |

bottom bottom

E F

There are this many monotonic functions from E to F .

Memory Management

200 Could dangling references to freed memory ever cause a program to run out of memory? Explain.

400 In implementations of dynamically-typed languages, tag bits are often used to encode the types of
run-time objects. Even though SCHEME/X is statically typed, every word of memory would still need one
tag bit. Why?

600 This many words of memory (including header words) are required to represent the following value
in the TORTOISE compiler.

6

(cons 1 (cons 2 (null)))

800 Write a SCHEME expression that generates a run-time structure that is not collectible by a reference-
counting garbage collector.

1000 Below is the non-zero portion of the lower semispace of a 40-word memory. We represent a tagged
value as integer, tag bit(s). Show the non-zero portion of the upper semispace (starting at address 20) of
memory after a stop-and-copy garbage collection is performed with a register containing 4 , 01. We have
omitted the type field in the header word, so you should assume that all words in the block must be scanned.
Recall that 0 tags an integer (or header word), and 01 tags a pointer.

O : 3, 0 6 : 2, 0
1 : 4, 0 7 : 9, 01
2 : 7, 01 8 : 0, 01
3 : 6, 0 9 : 2, 0
4 : 1, 0 10: 4, 01
5 : 9, 01 11: 9, 0

Types

200 Consider the set of all syntactically legal SCHEME/R expressions that contain no free variables. This
is the shortest (in terms of fewest characters) expression in this set that is not well-typed.

400 Does the following SCHEME/XSP expression type check? Explain.

(plambda (int)
(lambda ((x int))

(+ x 5)))

600 There are this many distinct values with the following type (assume that our language does not have
side-effects or divergence).

(poly (t) (-> (t t t) bool))

800 This is the SCHEME/XSP type checking rule for applications with one argument: (E0 E1)

1000 This is the typing rule in SCHEME/R for letrec with a single binding:

(letrec ((I1 E1)) EB)

(Recall that Gen(T, A) appropriately forms a type schema given type T and type environment A.)

Programming Paradigms

200 How can a run-time lock system dynamically check for deadlock?

400 Recall that all PostFix programs terminate. Is it possible to write a PostFix command sequence that
computes the absolute value of a number at the top of the stack? Explain.

600 What is the value of the following object-oriented programming system expression:

7

]
[]

[]

(let ((ob2 (object (method value (self) 2)))
(ob3 (object (method value (self) 3))))

(let ((ob5 (object
(method value (self) 5)
(method compute (self)

(send * (send value ob3)
(send value self))))))

(send compute (object ob2 ob3 ob5))))

800 Let S and F be the success and failure continuations. Fill in the desugaring for the pattern matching
operators.

Dclauseseq[[[], [], V, F] = ??
Dpat [, V, S, F] = ??
Dpatseq [, [], V, F] = ??

1000 List all possible values for the following control-parallel expression:

(let ((x (cell 3)))
(let ((thread (fork (cell-set! x

(+ (cell-ref x)
(cell-ref x))))))

(begin	 (cell-set! x 7)
(join thread)
(cell-ref x))))

Potpourri

200 In a purely functional programming language, can the meaning of an expression under call-by-value
semantics differ from the meaning of the same expression under call-by-name semantics? Explain.

400 What problem arises if we add the following procedure to a language with references?

free : (poly (t)
(-> ((ref-of t)) unit))

Given a reference value, free deallocates the storage occupied by the value pointed to by the reference
so that it can be reused.

600 The terms “bug” and “compile” were coined by this Navy rear admiral who designed COBOL.

800 Name the (1) parameter-passing mechanism and (2) variable scoping mechanism implied by the fol
lowing domain definitions and signatures:

Procedure = Denotable* → Environment → Expcont → Answer

Denotable = Expcont → Answer

Expcont = Expressible → Answer

E : Exp → Environment → Expcont → Answer

1000 Suppose (pairof T1 T2) is a type constructor for heterogeneous pairs. Give a type T that makes the
following two types equivalent:

8

a. (recof s (pairof int (pairof bool s)))

b. (pairof int T)

9

Round 3: Final Jeopardy

Types
What is the reconstructed type for the following SCHEME/R expression?

(letrec
((accumulate

(lambda (combiner seed lst)
(if	 (null? lst)

seed
(combiner
(car lst)
(accumulate	 combiner

seed
(cdr lst)))))))

accumulate)

10

Answers

Round 1: Jeopardy

Dynamic Semantics

100 What is call-by-value?

200 What is 0?

300 What is 16?

400 What is 504?

500 What is Denotable = Store → Result?

Type Reconstruction

100 No — the expression uses first-class polymorphism.

200 (-> ((-> (?b) ?c) (-> (?a) ?b)) (-> (?a) ?c))

300 No — self application of a non-generic variable x fails (fails in occurs check).

400 Only number 3 is reconstructible; in the other cases, id is constrained by the fact that the letrec
bound variables aren’t generic within the right-hand-side expressions.

500 What is (generic (t) (-> () t))?

Pragmatics

100 What is Assignment Conversion?

200 What is an identifier?

300 Environments must hold names as well as values.

400 Yes. Basically, each continutation is only used once to return the value of a procedure to the rest of
the computation. Thus all the continuations have type (-> (T1) T2) where T1 is the return type of the
procedure the continuation is used with and T2 is the result of the entire program.

500 None. plambda expressions have no run-time aspect — they are only used during type checking and
thus the value of a plambda is just the value of its body.

Program Translations

100 What is dynamic scoping? References to I1 within E will not be handled correctly.

200 No; Name capture of I can occur in E2.

11

300 No. E could be polymorphic in the first expression, but the desugaring would require first-class poly
morphism to support the same semantics.

400 What is simplifier non-termination?

500 In call-by-value, doesn’t preserve termination. E.g

(let ((x ((lambda (y) (y y)) (lambda (y) (y y)))))
3)

Trivia

100 What is Dylan?

200 What is Simula 67?

300 What is cancer of the semi-colon?

400 Who is Niklaus Wirth? His name is pronounceable both as “Vert” and “Worth”. Some people go
further and call him “Nickle’s-worth.”

500 What is “Lambda the Ultimate Objective”?

Round 2: Double Jeopardy

Semantics Fundamentals

200 What is 81? |B||A| = 34 = 81.

400 What is 19?

600 The domain Environment isn’t pointed, and fix is only well defined over pointed CPOs.

800 What is 6? Since or is strict, f must map ⊥ to ⊥. Since or is disjunction, it consistent for f to map true to
either ⊥ or true, and to map false to any element of Bool. Since there are two independent choices for true,
and three for false, there are six possible fixed points.

1000 What is 14? Here are the 14 possibilities:

9 if E⊥ ⇒ F⊥, then each of a and b can map to all 3 elts of F

4 if E⊥ ⇒ c, then each of a and b can map to c and d

1 if E⊥ ⇒ d, then each of a and b must map to d

Memory Management

200 Yes. In a stop-and-copy garbage collector, all memory pointed to by pointers accessible from the root
set (including the dangling reference) would be copied over, despite the fact the program explictly freed it.
So the memory pointed to by a dangling reference is never actually released by the garbage collector.

12

400 The single tag bit is used by the garbage collector, not the typing system. It is crucial for distinguishing
pointers from non-pointers.

600 What is 6? A cons cell has one header word and two field words. The cdr of the first cons cell is a
pointer to a second cons cell, which has a header word and two immediate values in its car and cdr. (null)
is represented by immediate integer 0.

800 Reference counting garbage collectors don’t collect structures with cycles, so we need to construct a
cyclic structure. The easiest way to do this in SCHEME is with cells; for example, the following expression
returns a reference cell that points to itself.

(let ((a (cell 0)))
(begin (cell-set! a a)

a))

Even if SCHEME did not support side effects, it would still be possible to create cyclic runtime structures
via letrec, since a procedures created in a letrec binding has a pointer to itself through the environment.
Therefore, another cycle-creating expression is:

(letrec ((f (lambda () (f))))
f)

In fact, any procedure created by letrec, should work, e.g.:

(letrec ((g (lambda () 3)))
g)

However, since compiler optimizations might remove the cyclic dependencies in a situation like g, it’s safer
to stick with a truly recursive function like f.

1000 The non-garbage in the given memory consists of a block A of size 1 that points to a block B of size
2 whose first slot points to A and whose second slot contains an immediate 9. These two blocks get copied
into the first five words of the second semispace as shown below. Note that the second semispace begins at
location 20.

...
20: 1, 0
21: 22, 1
22: 2, 0
23: 20, 1
24: 9, 0
...

Types

200 What is (1)? (Similar variants have the same length.)

400 It is not well-typed. + expects two arguments of base type int, but x is of some polymorphic type, int.
The typing rule for plambda prohibits the plambda-bound identifier from clashing with names that appear
in the types of free variables within the body (in this case, + uses the base type int).

13

]
[]

[]

600 What is two? The two are the polymorphic function of three arguments of the same type that returns
true, and a similar function that returns false. The result can’t possibly depend on the three arguments
because there are no polymorphic predicate or comparison operators.

800 What is

A � E0 : T1 → T2
A � E1 : T1

�

T1
� �T1

A � (E0 E1) : T2
[application]

1000 What is

A[I1:T1] � E1 : T1
A[I1:Gen(T1, A)] � EB : TB

A � (letrec ((I1 E1)) EB) : TB
[letrec]

Programming Paradigms

200 By constructing a dependancy graph and looking for cycles. Consider each process a node, and insert
a directed edge from P1 to P2 iff P2 holds a lock P1 is trying to aquire. A cycle indicates deadlock.

400 No. Computing the absolute value requires two references to the number: comparing it to zero and
possibly negating it. Without dup (or some means of naming a value), PostFix is unable to make more than
one reference to any value.

600 The value is 6. Even though ob5 responds to the compute message, its variable self is bound at that
point to the object composed of ob2, ob3, and ob5; a value message sent to this object is handled by ob2,
returning 2. A value message sent directly to ob3 returns 3.

800 Dclauseseq[[[], [], V, F] = (F)
Dpat [, V, S, F] = S
Dpatseq [, [], V, F] = S

1000 6, 7, 10, and 14.

Potpourri

200 Yes, it affects termination. Example:

((lambda (a) 3)
((lambda (x) (x x))
(lambda (x) (x x))))

400 Dangling pointers can result from a use of free.

600 Grace Murray Hopper.

800 The domains are from a standard semantics for a functional programming language. (1) Call-by-name
(in call-by-value, Denotable would be Expressible) (2) Dynamic scoping (because elements of the Procedure
domain take an environment).

14

1000 The recof types are equivalent if their infinite expansions are equal. The first type denotes an infinite
list of alternating int and bool, so T must denote an infinite list of alternating bool and int.

T = (recof t (pairof bool (pairof int t)))

Round 3: Final Jeopardy

(-> ((-> (?s ?t) ?t) ?t (list-of ?s)) ?t)

15

