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1. Final Examination 
There are five problems on this examination. Make sure you don’t skip over any of a problem’s parts! They 
are followed by an appendix that contains reference material from the course notes. The appendix contains 
no problems; it is just a handy reference. 

You will have three hours in which to work the problems. Some problems are easier than others: read all 
problems before beginning to work, and use your time wisely! 

This examination is open-book: you may use whatever reference books or papers you have brought to the 
exam. The number of points awarded for each problem is placed in brackets next to the problem number. 
There are 100 points total on the exam. 

Do all written work in your examination booklet – we will not collect the examination handout itself; you 
will only be graded for what appears in your examination booklet. It will be to your advantage to show 
your work – we will award partial credit for incorrect solutions that make use of the right techniques. 

If you feel rushed, be sure to write a brief statement indicating the key idea you expect to use in your 
solutions. We understand time pressure, but we can’t read your mind. 

This examination has text printed on only one side of each page. Rather than flipping back and forth be
tween pages, you may find it helpful to rip pages out of the exam so that you can look at more than one 
page at the same time. 

Contents 

Problem 1: Short Answer [18 points] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Problem 2: Operational Semantics [22 points] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Problem 3: Denotational Semantics [24 points] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

Problem 4: Type Reconstruction [20 points] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Problem 5: Compilers [16 points] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Appendix A: PostFix Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Appendix B: PostFix SOS from Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Appendix C: Standard Semantics of FLK! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Appendix D: Typing Rules for SCHEME/R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

Appendix E: Type Reconstruction Algorithm for SCHEME/R  . . . . . . . . . . . . . . . . . . . . . .  15 

Appendix F: Meta-CPS Conversion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 


The figures in the Appendix are very similar to the ones in the course notes. Some bugs have been fixed, 
and some figures have been simplified to remove parts inessential for this exam. You will not be marked 
down if you use the corresponding figures in the course notes instead of the appendices. 



Problem 1: Short Answer [18 points] 

a. Explicit Polymorphism [6 points]


Rewrite the following programs in Scheme/XSP with the most flexible type possible.


(i) [3 points] 

(lambda (f g x) 
(if (f x)


(g x)

(g (g x))))


(ii) [3 points] 

(lambda (f) 
(if (f #t)


(f (f 1))

(f 2)))


b. Type Reconstruction [12 points] 

Determine the reconstructed types of the following Scheme/R expressions. If none exists, explain 
why. 

(i) [3 points] 

(lambda (f x) 
(if (f #t)


(f x)

2))


(ii) [3 points] 

(let ((f (lambda (g x) (g (g x))))) 
(if (f not #t)


(f (lambda (x) (+ x 1)) 1)

2))


(iii) [3 points] 

(let ((f (lambda (x) x)))

(cons (f 1)


(cons (f #t)

(null))))


(iv) [3 points] 

(lambda (g) (g g)) 
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Problem 2: Operational Semantics [22 points] 

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON EXTENDING THE POSTFIX 
GRAMMAR IN APPENDIX A AND THE POSTFIX OPERATIONAL SEMANTICS GIVEN IN APPENDIX 
B. 

Intel has released the new 747 chip, a chip so big it can handle mind boggling amounts of number crunch
ing. The good programmers over at Microsquish are excited because this means there is now a computer 
fast enough to run their dream programming language, TwoStack PostFix. In TwoStack PostFix, a program 
is a tuple of two command sequences, one per stack. For instance, to have one stack add the numbers 1 and 
3 and have the other stack multiply 4 * 5, use  the  program 

<[1 3 add],[4 5 mul]> 

The meaning of a TwoStack program is also a tuple, reporting the top of each stack at the end of the pro
gram. In the previous case, <4,20>. 

Keep in mind that the stacks are represented as completely separate entities at different locations in mem
ory. Note that we will model errors as stuck states. For example, the program 

<[5 1 mul],[4 0 div]> 

should get stuck. It is also a stuck state if one stack runs out of commands before the other. For instance, 

<[5 1 mul 3 add],[4 1 div]> 

should get stuck right after the transition which performs the div command. Note that matching com
mands are executed simultaneously- that is, the 5 and 4 are pushed at the same time and the mul and the 
div are executed at the same time. 

Finally, Executives at Microsquish would like to implement a talk command allowing the two stacks to 
communicate. For now, do not worry about the transition rule for the talk command, but know that it 
requires the following domain updates: 

C ∈ CommandPostFix+Talk 

C ::= ... existing PostFix commands ... 
| talk 

Q ∈ CommandsPostFix+Talk = CommandPostFix+Talk * 
V ∈ Value = IntLit + CommandsPostFix+Talk 

In addition, the transition relation for PostFix+Talk is the same as the relation for PostFix except it is 
updated to work with the new domains. It currently results in a stuck state for the talk command. 

The important domains for TwoStack are as follows: 

P ∈ ProgramTwoStack = CommandsTwoStack 

CommandsTwoStack = CommandsPostFix+Talk × CommandsPostFix+Talk 

A AnswerTwoStack = Answer × Answer ∈ 

a. [12 points] Louis Reasoner is given the job of defining the Operational Semantics of PostFix+Talk. He 
decides on the following configuration: 
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CTwoStack = CommandsTwoStack × Stack × Stack 

However, he needs your help to define the rest of the 5-tuple. Define the Input, Ouput and Transition 
functions in terms of the PostFix+Talk functions. Use subscripting to express which domains the func
tions are over. For instance, ⇒PostF ix+Talk  is the transition function for PostFix+Talk and ⇒TwoStack 

is the transition function for TwoStack PostFix. 

Be sure to also define the set of final configurations of TwoStack Postfix, but do not worry about 
reporting errors for stuck states. 

It’s not very exciting having two stacks run in parallel unless they can communicate. So, Louis Reasoner 
decides to define the talk command. If talk is at the front of both command sequences, the top value on 
each stack is copied to the top of the other stack. For instance, 

<[5 1 mul talk add],[4 1 div talk mul]> 

should return <9,20> 

b. [6 points] Extend the transition function for TwoStack to include the talk command. 

c. [4 points] Mark An-treason (who is also working at Microsquish since his company was bought out) 
is worried that programs with talk may not terminate. If programs in TwoStack PostFix always ter
minate, set Mark’s fears at rest by explaining how you would modify the energy proof to show this. 
If not, give an example program which does not terminate. 
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Problem 3: Denotational Semantics [24 points] 

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON MODIFYING THE FLK! STAN
DARD SEMANTICS GIVEN IN APPENDIX C. 

Ben Bitdiddle has been called in to assist in the development of a new feature for FL!. This feature will allow 
procedures to call themselves recursively without having to use rec or letrec. Ben proposes adding a new 
form (self E) to FLK!. The form (self E) calls the containing procedure with an actual parameter that is the 
result of evaluating E. 

The FLK! expression grammar is changed by the addition of the form (self E): 

E ::= ... existing FLK! forms ..

| (self E)


Here is an example of the use of (self E) written in FL! (which would be desugared into FLK! before execu
tion): 

(let ((fact (lambda (n) (if (= n 0) 1 (* n (self (- n 1)))))))

(fact 4))


⇒
Ben further specifies that when (self E) is used outside of a procedure it causes the program to terminate 
immediately with a value that is the result of evaluating E. 

Ben begins describing the denotational semantics of the self form by modifying the signature of the mean
ing function, E . His new signature is: 

: Exp → Environment → SelfProc → ExpCont → CmdContE
SelfProc = Procedure 

Ben asks you to complete the denotational description of the self form because he is going to a confer
ence to give a speech on why FL! is the language of the future. 

[Ea. [4 points] Give the revised meaning function T L[ ]]. 

b. [4 points] What is the revised E [[(call E1 E2)]]? 

c. [4 points] What is E [[(self E)]]? 

d. [4 points] What is the revised E [[(proc I E)]]? 

e. [4 points] Prove that T L[[(self (self 1))]] in your semantics means (Value→Expressible (Int→Value 1)). 

f. [4 points] Use your semantics to show (proc x (self 1)) evaluates to a procedure that, no matter what 
input it is called with, loops forever. 
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Problem 4: Type Reconstruction [20 points] 

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON EXTENDING THE TYPING 
RULES GIVEN IN APPENDIX D AND THE TYPE RECONSTRUCTION ALGORITHM GIVEN IN AP
PENDIX E. 

Alyssa P. Hacker has been asked to extend the type system for SCHEME/R to handle (label I E) and (jump 
E1 E2). As introduced in class and in the book, (label I E) establishes a control point called I in E, and (jump 
E1 E2) jumps to the control point that is the value of E1 and gives it the value obtained by evaluating E2. 

For example: 

(label out 
(if (= x 0) 


(jump out 0)

(/ y x)))


Alyssa has added a control point type to the type grammar for SCHEME/R as follows: 

T ::=	 ... existing SCHEME/R types ...

(control-point T)
| 

In the example above, the control point out would have type (control-point int). It is possible to have control 
point type errors in SCHEME/R. For example, a label expression must have the same type regardless of 
whether a jump is encountered, making the following expression not well-typed: 

(label out 
(if (= x 0) 


(jump out #f)

(/ y x)))


Your job is to complete the implementation of typed control points. 

a. [5 points] Give the new typing rules in SCHEME/R for (label I E) and (jump E1 E2). 

b. [5 points] Give the type reconstruction algorithm clause for (label I E). 

c. [5 points] Give the type reconstruction algorithm clause for (jump E1 E2). 

d. [5 points] Give the reconstructed type of the following expression, or give the input parameters to the 
procedure that fails during the reconstruction: 

(let ((x (label y y)))

(jump x (label z z)))
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Problem 5: Compilers [16 points] 

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON META CPS CONVERSION

ALGORITHM GIVEN IN APPENDIX F.


Ben Bitdiddle is a consummate compiler hacker, and has been asked by JavaHard to analyze their new

Scheme compiler. JavaHard has recently realized that Java will not win in the marketplace against Scheme,

and has adopted the 6.821 Scheme compiler as the cornerstone of their crash development effort.

The following code was produced by the compiler after the desugar, globals/wrap, cps-convert, closures/flat-all,

and lift-convert phases of compilation.


(program 
(define

.lambda24.

(lambda

(.closure11. .t5.)

(call-closure .t5. 1 (primop closure-ref .closure11. 1))))


(define

.lambda21.

(lambda

(.closure14. f g .k1.)

(call-closure .k1. (primop closure .lambda22. g f))))


(define

.lambda22.

(lambda

(.closure13. x .k2.)

(call-closure

(primop closure-ref .closure13. 1)


(primop closure .lambda23. (primop closure-ref .closure13. 2) .k2.)))) 
(define

.lambda23.

(lambda

(.closure12. .t3.) 
(call-closure

(primop closure-ref .closure12. 1)

.t3.

(primop closure-ref .closure12. 2))))


(define .lambda20. (lambda (.closure17. x) x)) 
(define

.lambda19.

(lambda

(.closure16. a .k9.)

(let ((.t10. (primop not a))) (call-closure .k9. .t10.))))


(define

.lambda18.

(lambda

(.closure15. a .k7.) 
(let ((.t8. (primop integer? a))) (call-closure .k7. .t8.))))


(define *top* (primop closure .lambda20.))

(define not (primop closure .lambda19.))

(define integer? (primop closure .lambda18.))

(let

((compose (primop closure .lambda21.)))

(call-closure compose not integer? (primop closure .lambda24. *top*))))
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a. [6 points] What source code resulted in the incompletely compiled code above? 

JavaHard soon discovers another problem with the compiler. The compiler they are using cannot 
handle the begin form because the cps-convert phase does not include a rule for translating begin. 

b. [4 points] Ben looked in the 6.821 book and could not find the meta-cps rule for begin. What is 
MCPS[[(begin E1 E2)]]? 

JavaHard has decided to not let programmers access control features such as cwcc, label, and jump to 
simplify the analysis of programs. Ben suggests to JavaHard that they include a region identifier in every 
procedure type: 

∗T ::= ... (→ (T ) T R)|

Just as regions are assigned to cells, every procedure will be assigned a new region identifier except 
when two procedures are aliased together. 

A procedure in E can be explicitly freed if all of the following conditions are met: (1) the procedure is in 
region R, (2) region R is not in the type of any free variables of E, and (3) region R is not in the type of E. 

c. [4 points] Excited about explicit freedom, Ben invents a new primitive called (%procedure-free x) that 
frees the procedure represented by value x. In the following example, the lambda expression (lambda 
(y) y) is bound to x and freed: 

(let ((x (lambda (y) y)))

(%procedure-free x))


Let E be an expression that contains a non-nested lambda expression P. From effect analysis, we know 
that P’s value is no longer needed after E completes. Thus, Ben would like to use (%procedure-free x) 
to free the procedure value corresponding to P. Help Ben by writing a translation function for E that 
will free the value of P and return the value of E. Use [v/P]E to substitute the variable v for lambda 
expression P in E. Assume that your translation occurs before MCPS conversion and that the variable 
v does not appear in E. 

T [ ][E ]=(let ((v P)) 

...fill in text here...

)


d. [2 points] Ben revises his compiler to call this primitive to free all closures using your translation rule 
(assuming it works), and notes that certain programs slow down as a consequence. Ben had thought 
that reducing the work that the garbage collector had to do would make programs run faster. What is 
a possible explanation for this behavior? 
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Appendix A: PostFix Grammar


P ∈ Program

Q ∈ Commands

C ∈ Command

A ∈ Arithmetic-operator = {add, sub, mul, div}

R ∈ Relational-operator = {lt, eq, gt}

N ∈ Intlit = {. . .,  -2, -1, 0, 1, 2, . . .}

P ::= (Q) [Program]


Q ::= C* [Command-sequence]


C ::= N [Integer-literal]

pop [Pop]
| 
swap [Swap]
| 
A [Arithmetic-op]
| 
R [Relational-op]
| 
sel [Select]
| 
exec [Execute]
| 
(Q) [Executable-sequence]
| 

Figure 1: The S-Expression Grammar for PostFix 
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Appendix B: PostFix SOS from Chapter 3 

, I and O for our PostFix SOS are given by: , FC


= Commands × Stack
C

= {[ ]Command } ×  StackF

I : Program → C
= λP .	 matching P 

� (Q) [] 〈Q, [ ]Value 
endmatching 

O : F → Answer 
= λ〈[ ]Command , S . matching S〉

� V . S′ [] (Value � Answer V)→
� [ ] [] (Error Answer error) 
endmatching

→

〈N . Q, Q, N . S	 [numeral]S〉 ⇒ 〈 〉 

〈(Qexec ).Qrest , Qrest , Qexec . S〉 [executable]S〉 ⇒ 〈

〈pop . Q, Vtop . S〉 ⇒ 〈Q, S [pop] 

〈swap . Q, V1 . V2 Q, V2 . V1 . S	 [swap]. S〉 ⇒ 〈 〉 

〈sel . Qrest , Vfalse  . Vtrue .0.  S〉 ⇒ 〈Qrest , Vfalse  . S	 [sel-false] 

〈sel . Qrest , Vfalse  . Vtrue . Ntest . S〉 ⇒ 〈Qrest , Vtrue . S
where	 Ntest ≡ 0 

〉 [sel-true] 

〈exec . Qrest , Qexec . S〉 ⇒ 〈Qexec @ Qrest , S	 [execute] 

A . Q, N1 . N2 . S〉 ⇒ 〈Q, Nresult . S〈
where Nresult ≡ (calculate A N2 N1)

〉 
[arithop] 

and	 ((A ≡ div) ∧ (N1 ≡ 0))¬

〈R . Q, N1 . N2 Q, 1.  S. S〉 ⇒ 	〈 〉 [relop-true]where	 (compare R N2 N1) 

〈R . Q, N1 . N2 Q, 0.  S. S〉 ⇒ 	〈 〉 [relop-false]where (compare R N2 N1)¬

Figure 2: Rewrite rules defining the transition relation for PostFix. 
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Appendix C: Standard Semantics of FLK!


v ∈ Value = Unit + Bool + Int + Sym + Pair + Procedure + Location


k ∈ Expcont = Value Cmdcont
→
γ ∈	 Cmdcont = Store → Expressible


Expressible = (Value + Error)
⊥ 
Error = Sym 

p ∈ Procedure = Denotable → Expcont → Cmdcont

d ∈ Denotable = Value


e ∈ Environment = Identifier → Binding

β ∈	 Binding = (Denotable + Unbound)⊥ 

Unbound = {unbound}

s ∈ Store = Location → Assignment

l ∈ Location = Nat


α ∈	 Assignment = (Storable + Unassigned)⊥ 
σ ∈	 Storable = Value


Unassigned = {unassigned}


top-level-cont : Expcont 
= λv . λs . (Value →Expressible v) 

error-cont : Error Cmdcont→ 
= λy . λs . (Error →Expressible y) 

empty-env : Environment = λI . (Unbound →Binding unbound) 

test-boolean : (Bool → Cmdcont) → Expcont 
= λf . (λv . matching v 

[� (Bool Value b) ] (f b)→
� else (error-cont non-boolean) 
endmatching ) 

Similarly for: 
test-procedure : (Procedure → Cmdcont) → Expcont 
test-location : (Location → Cmdcont) → Expcont 
etc. 

ensure-bound : Binding → Expcont → Cmdcont 
= λβk . matching β


[
� (Denotable →Binding v) ] (k v) 
[� (Unbound →Binding unbound) ] (error-cont unbound-variable ) 

endmatching 
Similarly for:

ensure-assigned : Assignment → Expcont → Cmdcont


Figure 3: Semantic algebras for standard semantics of strict CBV FLK!. 
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same-location? : Location Location Bool = λl1l2 . (l1 =Nat l2)→
next-location : Location 

→
Location = λl . (l +Nat 1)→ 

empty-store : Store = λl . (Unassigned →Assignment unassigned) 

fetch : Location → Store → Assignment = λls  . (s l) 

assign : Location Storable Store Store → → → 
= λl1σ s . λl2 . if (same-location? l1 l2) 

then (Storable →Assignment σ) 
else (fetch l2 s) 

fresh-loc : Store Location = λs . (first-fresh s 0)→ 

first-fresh : Store Location Location→ 
= λsl  . matching (fetch l s)

→ 

� (Unassigned →Assignment unassigned) ][ l 
� else (first-fresh s (next-location l))

endmatching


lookup : Environment → Identifier → Binding = λeI . (e I) 

Figure 4: Store helper functions for standard semantics of strict CBV FLK!. 
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T L : Exp → Expressible 
E : Exp → Environment → Expcont → Cmdcont 
L : Lit Value ; Defined as usual→

[ ]  [ ]E ] = E [E ] empty-env top-level-cont empty-storeT L [

[ ]  [ ]L ] = λek . k L [L ]E [

[ ]I ] = λek . ensure-bound (lookup e I) kE [

[[ ]E [[(proc I E)]] = λek . k (Procedure Value (λdk ′ . E E ] [I : d]e k ′))→

[ ][ ] e (test-procedure (λp . E E2E [[(call E1 E2)]] = λek . E E1 [ ][ ] e (λv . p v k))) 

E [[(if E1 E2 E3)]] =  
[ ]  [ ] [ ]λek . E [E1 ] e (test-boolean (λb . if b then E [E2 ] e k  else E [E3 ] e k)) 

[ ][ ] e (λv1 . E E2E [[(pair E1 E2)]] = λek . E E1 [ ][ ] e (λv2 . k (Pair Value v1, v2 )))→ 〈 〉

E [[(cell E)]] = λek . E E[ ][ ] e (λvs . k (Location Value (fresh-loc s))→
(assign (fresh-loc s) v s)) 

[ ]  [ ]E [[(begin E1 E2)]] = λek . E [E1 ] e (λvignore . E [E2 ] e k) 

[ ][ ]E [[(primop cell-ref E)]] = λek . E E e (test-location (λls  . ensure-assigned (fetch l s) k s)) 

E [[(primop cell-set! E1 E2)]]
[ ]  [ ]= λek . E [E1 ] e (test-location (λl . E [E2 ] e (λvs . k  (Unit Value unit) (assign l v  s))))→

E [[(rec I E)]] = λeks . let f = fixExpressible (λa . E E[ ][ ] [I : (extract-value a)] e top-level-cont s) 
matching f 
� (Value →Expressible v) ] E E� [ [ ][ ] [I : v] e  k s  
� else f 
endmatching 

extract-value : Expressible → Binding 
= λa . matching a 

[� (Value →Expressible v) ] (Denotable →Binding v) 
� else ⊥Binding

endmatching


Figure 5: Valuation clauses for standard semantics of strict CBV FLK!. 
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Appendix D: Typing Rules for SCHEME/R 


 #u : unit [unit] 

: bool [bool]
 B 

: int [int]
 N 


 (symbol I) : sym [symbol] 

[. . . , I:T, . . .] 
 I : T [var] 

[. . . , I:(generic (I1 . . .  In) Tbody ), . . .] 
 I : (∀i [Ti/Ii])Tbody [genvar] 

A 
 Etest : bool ; A 
 Econ : T ; A 
 Ealt : T 
[if ]

A 
 (if Etest Econ Ealt ) : T 

A[I1:T1, . . ., In:Tn] 
 Ebody : Tbody [λ]
A 
 (lambda (I1 . . .  In) Ebody ) : (-> (T1 . . .  Tn) Tbody ) 

A 
 Erator : (-> (T1 . . .  Tn) Tbody ) 
∀i .  (A 
 Ei : Ti) 

A 
 (Erator E1 . . .  En) : Tbody 

[apply] 

∀i .  (A 
 Ei : Ti)

A[I1:Gen(T1, A), . . ., In:Gen(Tn, A)] 
 Ebody : Tbody
 [let]

A 
 (let ((I1 E1) . . .  (In En)) Ebody ) : Tbody 

∀i .  (A[I1:T1, . . ., In:Tn] 
 Ei : Ti)

A[I1:Gen(T1, A), . . .  In:Gen(Tn, A)] 
 Ebody : Tbody
 [letrec]

A 
 (letrec ((I1 E1) . . .  (In En)) Ebody ) : Tbody 

∀i .  (A 
 Ei : Ti) [record]
A 
 (record (I1 E1) . . .  (In En)) : (recordof (I1 T1) . . .  (In Tn)) 

A 
 Er : (recordof (I1 T1) . . .  (In Tn)) 
A[I1:T1, . . ., In:Tn] 
 Eb : T 

[with]
A 
 (with (I1 . . .  In) Er Eb) : T 

A 
 (letrec ((I1 E1) . . .  (In En)) Ebody ) : T 
A 
 (program (define I1 E1) . . .  (define In En) Ebody ) : T 

[program] 

Gen(T, A) =  (generic (I1 . . .  In) T), where {Ii} = FTV (T ) − FTE(A) 
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Appendix E: Type Reconstruction Algorithm for SCHEME/R 

[ ]R [#u ] A S  = unit, S

[ ]R [B ] A S  = bool, S

[ ]R [N ] A S  = int, S

R[[(symbol I)]] A S  = sym, S

[ ]R [I ] A[I : T ] S = T, S

[ ]R [I ] A[I : (generic (I1 . . .  In) T)] S = T [?vi/Ii], S (?vi are new) 

[ ]R [I ] A S  = fail (when I is unbound) 

[[R[[(if Et Ec Ea)]] A S  =	 let Tt, St = R Et]]A S  
in 

〈
let St 

′ 
〉 
= U(Tt, bool, St) 

[[in	 let 〈Tc, Sc = R Ec]]A St 
′ 

[[in	 let Ta, Sa = R Ea]]A Sc 

in 
〈
let S′ 

〉 
= U(Tc, Ta, Sa)a 

in	 Ta, S′ 
a

[[R[[(lambda (I1 . . .  In) Eb)]] A S  = let Tb, Sb = R Eb]]A[Ii :?vi] S 
in (-> (?v1 . . .  ?vn) Tb), Sb (?vi are new) 

[[R[[(E0 E1 . . .  En)]] A S  = let T0, S0 = R E0]]A S  
in . . .  

[[let	 Tn, Sn = R En]]A Sn−1 

in 
〈
let Sf = U(T0, (-> (T1 . . .  Tn) ?vf ), Sn) 
in ?vf , Sf (?vf is new) 

[[R[[(let ((I1 E1) . . .  (In En)) Eb)]] A S  = let 〈T1, S1 = R E1]]A S  
in . . .  

[[let Tn, Sn = R En]]A Sn−1 

[[in R Eb]]A[Ii : Rgen(Ti, A, Sn)]Sn 

R[[(letrec ((I1 E1) . . .  (In En)) Eb)]] A S  = let A1 = A[Ii :?vi] (?vi are new) 
[[in	 let T1, S1 = R E1]]A1 S 

in . . .  
[[let	 Tn, Sn = R En]]A1 Sn−1 

in 
〈
let Sb = U(?vi, Ti, Sn) 

[[in R Eb]]A[Ii : Rgen(Ti, A, Sb)] Sb 

[[R[[(record (I1 E1) . . .  (In En))]] A S  = let T1, S1 = R E1]]A S  
in . . .  

[[let Tn, Sn = R En]]A Sn−1 

in (recordof (I1 T1) . . . 	(In Tn)), Sn〉 

[[R[[(with (I1 . . .  In) Er Eb)]] A S  =	 let Tr, Sr = R Er]]A S  
in 

〈
let Sb 

〉 
= U(Tr, (recordof (I1 ?vi) . . .  (In ?vn)), Sr) (?vi are new) 

[[in R Eb]]A[Ii :?vi] Sb 

Rgen(T, A, S) =  Gen((S T ), (subst-in-type-env S A)) 
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Appendix F: Meta-CPS Conversion Rules 

In the following rules, grey mathematical notation (like λv) and square brackets [ ] are used for 
“meta-application”, which is evaluated as part of meta-CPS conversion. Code in BLACK TYPEWRITER FONT is 
part of the output program; meta-CPS conversion does not evaluate any of this code. Therefore, you can 
think of meta-CPS-converting an expression E as rewriting MCPS[ ]] until no grey is left.[E 

E ∈ Exp 
m ∈ Meta-Continuation = Exp → Exp 

meta-cont → exp : (Exp → Exp) → Exp = [λm . (LAMBDA (t)[m t])] 
exp → meta-cont : Exp → (Exp → Exp) = [λE . [λV . (CALL E V  )]] 

meta-cont→exp [λV . (CALL K V )] = K 

Meta-Continuation → ExpMCPS : Exp → 

[IMCPS[ ]] = [λm . [m I]] 

[L ] = [λm . [m L]]MCPS[ ]  

MCPS[[(LAMBDA (I1 ... In) E)]]
= [λm . [m (LAMBDA (I1 ... In .Ki.) 

[E ] [exp → meta-cont .Ki.]])]][MCPS[ ]  

MCPS[[(CALL E1 E2)]]
= [λm . [MCPS[[E1]] [λv1 . 

[MCPS[[E2]] [λv2 . 
(CALL v1 v2 [meta-cont → exp m])]]]]] 

MCPS[[(PRIMOP P E1 E2)]]
= [λm . [MCPS[[E1]] [λv1 . 

[MCPS[[E2]] [λv2 . 
(LET ((.Ti. (PRIMOP P v1 v2))) 

[m .Ti.])]]]]] 

[[ Et Ef)]]MCPS (IF Ec 

[[ ]= [λm . [MCPS Ec ] [λv1 .

(LET ((K [meta-cont → exp m]))


(IF v1


[ [[ ] meta-cont K]]
MCPS
[[
Et ] [exp →

[MCPS Ef ]] [exp → meta-cont K]]))]]] 
MCPS[[(LET ((I Edef )) Ebody)]]

= [λm . [MCPS[[Edef ]] [λv . 
(LET ((I v)) [MCPS[[Ebody]] m])]]] 
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2. Final Examination Solutions 

Problem 1: Short Answer 

a. Explicit Polymorphism 

(i) (plambda (t)

(lambda ((f (-> (t) bool)) (g (-> (t) t) (x t)))


(if (f x)

(g x)

(g (g x)))))


(ii) (lambda ((f (poly (t) (-> (t) t)))) 
(if ((proj	 f bool) #t)


((proj f int) ((proj f int) 1))

((proj f int) 2)))


b. Type Reconstruction 

(i) No reconstructed type exists. There is no first class polymorphism allowed in Scheme/R. 

(ii) int 

(iii) No reconstructed type exists. No heterogeneous lists in Scheme/R. 

(iv) No reconstructed type exists. Hindley-Milner cannot reconstruct the type of an identifier in
volved in a self application. 

Problem 2: Operational Semantics 

a. 

: ProgramTwoStack → CTwoStack
I
TwoStack 

TwoStack = λ Q1, Q2 . 1, Q2〉, []Value , []Value I 〈 〉 〈〈Q	 〉 
TwoStack = {[]CommandPostFix+Talk } × {[]CommandPostFix+Talk } × Stack × StackF


TwoStack : F → AnswerTwoStack
O
, S1, S2 .TwoStack = λ〈〈[]CommandPostFix+Talk , []CommandPostFix+Talk O	 〉 〉

PostFix 〈[]CommandPostFix+Talk , S1 , OPostFix 〈[]CommandPostFix+Talk , S〈O 〉	 2〉〉 
⇒TwoStack : 

Q1, S PostFix+Talk Q1, S′ 
2, S PostFix+Talk Q2, S′ 

2〈 1〉 ⇒ 〈 1〉 ∧ 〈Q 2〉 ⇒
′ 

〈 ′ 〉 
1, Q2 , S1, S TwoStack 〈〈Q1, Q2 , S1, S2

′〈〈Q 〉 2〉 ⇒ ′ 〉 ′ 〉 

b. 

〈〈talk.Q1, talk.Q2 , V1.S1, V2.S TwoStack 1, Q2 , V2.V1.S1, V1.V2.S2〉 2〉 ⇒ 〈〈Q 〉 〉 

c. The following program does not terminate: 

<((talk exec) talk exec),((talk exec) talk exec)> 
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Problem 3: Denotational Semantics 

[E ] = (E [ ]] empty-env (λdk . (top-level-cont d)) top-level-cont empty-store)a. T L[ ]  [E 

b. E [[(call E1 E2)]] = λep1k . (E [[E1]] e p1 (test-procedure (λp2 . (E [[E2]] e p1 (λv . (p2 v k)))))) 

c. E [[(self E)]] = λepk . (E [[E]] e p λv . (p v  k)) 

d. E [[(proc I E)]] = 

λep1k1 . (k1 (Procedure→Value (fixProcedure(λp2 . (λdk2 . (E [ ]� [E ] [I : d]e p2 k2)))))) 

e. 

T L[[(self (self 1))]] =  
= (E [[(self (self 1))]] empty-env (λdk . (top-level-cont d)) top-level-cont empty-store) 
= (E [[(self 1)]] empty-env (λdk . (top-level-cont d)) top-level-cont empty-store) 

because λv . (λdk . (top-level-cont d) v k) =  top-level-cont 
= (E [ ][1 ] empty-env (λdk . (top-level-cont d)) top-level-cont empty-store) 
= (top-level-cont L[[1]]) 
= (Value→Expressible (Int→Value 1)) 

f. 

E [[(proc x (self 1))]]
= λep1k1 . (k1 (Procedure→Value (fixProcedure λp2 . (λdk2 . (E [[(self 1)]] [x : d]e p2 k2))))) 
= λep1k1 . (k1 (Procedure→Value (fixProcedure λp2 . (λdk2 . (E1) [x : d]e p2 λv . (p2 v k2)))))) 
= λep1k1 . (k1 (Procedure→Value (fixProcedure λp2 . (λdk2 . (λv . (p2 v k2) L[[1]]))))) 
= λep1k1 . (k1 (Procedure→Value (fixProcedure λp2 . (λdk2 . (p2 L[ ]� [1 ] k2))))) 

but ⊥Procedure is a fixed point of λp2 . (λdk2 . (p2 L[ ][1 ] k2)) 

It should be clear that ⊥Procedure must be the procedure-generating function’s least fixed point. This 
means that the procedural value that the expression (proc x (self 1)) computes is ⊥Procedure, a pro-
cedure that given any denotable and expression continuation returns ⊥CmdC ont i.e. a procedure that 
loops forever regardless of its input. Since this procedural value is the value computed by (proc x (self 
1)), we have completed the demonstration. 

Problem 4: Type Reconstruction 

a. 
A[I:(control-point T)] 
 E : T 

[label]
A 
 (label I E) : T 

A 
 E1 : (control-point T) 
A 
 E2 : T 

A 
 (jump E1 E2) : Tany 

[jump] 

b. R[[(label I E)]] A S  = let T1, S1 = R E A[I : (control-point ?v1)] S

in 〈

〈
T1, U  (T

〉
1, ?v1

[[
, S

]]
1)


where ?v1 is a fresh type variable 
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c. R[[(jump	 E1 E2)]] A S  = let T1, S1 = R[[E1]]A S  
in 

〈
let T2

〉
, S2 = R[[E2]]A S1 

in 〈
〈
?v1, U(

〉
T1, (control-point T2), S2)

where ?v1 is a fresh type variable 

d. Unification fails while reconstructing the type of (label y y). The unification call that fails is 
U((control-point ?v1),?v1,S1). 

Problem 5: Compilers 

a.	 (let ((compose (lambda (f g)(lambda (x)(f (g x))))))

((compose not integer?) 1))


b. MCPS[[(begin E1 E2)]] m = 

(begin (MCPS[[E1]] (λV . V)) (MCPS[[E2]] m))


c. T [ ][E ]= 

(let ((v P))

(let ((r [v/P]E))


(begin

(%procedure-free v)

r)))


d. One possible explanation is that the programs do not exhaust memory, and thus the garbage collec
tor is never called. In that case, explicitly freeing unused closures is extra work that has no benefit. 
Another possibility is that in some programs, explicitly freeing closures releases enough memory so 
the garbage collector is no longer invoked, leading to storage fragmentation that slows the program 
down. 
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