
6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

Final Examination 2001
There are five problems on this examination. Make sure you don’t skip over any of a problem’s parts! They
are followed by an appendix that contains reference material from the course notes. The appendix contains
no problems; it is just a handy reference.

You will have three hours in which to work the problems. Some problems are easier than others: read all
problems before beginning to work, and use your time wisely!

This examination is open-book: you may use whatever reference books or papers you have brought to the
exam. The number of points awarded for each problem is placed in brackets next to the problem number.
There are 100 points total on the exam.

Do all written work in your examination booklet – we will not collect the examination handout itself; you
will only be graded for what appears in your examination booklet. It will be to your advantage to show
your work – we will award partial credit for incorrect solutions that make use of the right techniques.

If you feel rushed, be sure to write a brief statement indicating the key idea you expect to use in your
solutions. We understand time pressure, but we can’t read your mind.

This examination has text printed on only one side of each page. Rather than flipping back and forth be
tween pages, you may find it helpful to rip pages out of the exam so that you can look at more than one
page at the same time.

Contents

Problem 1: Short Answer [20 points] . 2

Problem 2: State: FLK# [20 points] . 3

Problem 3: Explicit Types [20 points] . 4

Problem 4: Type Reconstruction [20 points] . 5

Problem 5: Compiling [20 points] . 7

Appendix A: Standard Semantics of FLK! . 8

Appendix B: Typing Rules for SCHEME/XSP . 11

Appendix C: Typing Rules for SCHEME/R . 13

Appendix D: Type Reconstruction Algorithm for SCHEME/R . 14

Appendix E: Meta-CPS Conversion Rules . 15

Appendix F: Match Desugaring . 16

The figures in the Appendix are very similar to the ones in the course notes. Some bugs have been fixed,
and some figures have been simplified to remove parts inessential for this exam. You will not be marked
down if you use the corresponding figures in the course notes instead of the appendices.

Problem 1: Short Answer [20 points]

a. Given the following domains:

A = {1}
⊥
B = {a, b}⊥

(i) [2 points]How many set theoretic functions are there in A → B?

(ii) [2 points] How many continuous functions are there in A → B?

b. In Scheme/R (Scheme with type reconstruction) give the most general type schemes of the following
expressions, or state why the expression does not have a type:

(i) [1 points]

(lambda (f) (lambda (g) (lambda (x) (g (f x)))))

(ii) [1 points]

(lambda (x) (x x))

(iii) [1 points]

(letrec ((f (lambda (x) (if (id x) (id 0) (id 1))))

(id (lambda (y) y)))

(f #t))

(iv) [1 points]

(lambda (id) (if (id #t) (id 0) (id 1)))

c. Give the equivalent Scheme/XSP expression, and the type thereof, for each of the expressions in the
previous part (part b).

(i) [2 points]

(ii) [2 points]

(iii) [2 points]

(iv) [2 points]

d. [2 points] Give the desugaring of the following Scheme/R expression (the match desugaring can be
found in Appendix F)

(match z

((cons 1 x) x)

(x (cons 1 x)))

e. [2 points] Use define-datatype to define the (queueof T) datatype that represents a queue with a list.
For example, a (queueof int) would be represented by an integer list.

2

Problem 2: State: FLK# [20 points]

YOUR ANSWERS TO THIS PROBLEM SHOULD BE BASED ON THE STANDARD DENOTATIONAL SE
MANTICS FOR FLK! AS PRESENTED IN APPENDIX A.

Sam Antics is working on a new language with hot new features that will appeal to government customers.
He was going to base his language on Caffeine from Moon Microsystems, but negotiations broke down. He
has therefore decided to extend FLK! and has hired you, a top FLK! consultant, to assist with modifying
the language to support these new features. The new language is called FLK#, part of Sam Antics’ new
.GOV platform. The big feature of FLK# is user tracking and quotas in the store. An important customer
observed that government users tended to use the store carelessly, resulting in expensive memory upgrades.
To improve the situation, the FLK# store will maintain a per-user quota. (A quota restricts the number of
cells a particular user can allocate.) The Standard Semantics of FLK! are changed as follows:

w ∈ UserID = Int
q ∈ Quota = UserID → Int
γ ∈ Cmdcont = UserID → Quota → Store → Expressible

error-cont : Error → Cmdcont
= λy . λw . λq . λs . (Error �→Expressible y)

UserID is just an integer. User ID 0 is reserved for the case when no one is logged in. Quota is a function
that when given a UserID returns the number of cells remaining in the user ’s quota. The quota starts at
100 cells, and a user ’s quota is tracked throughout the lifetime of the program (i.e., the quota is not reset
upon logout). Cmdcont has been changed to take the currently logged in user ID, the current quota, and
the current store to yield an answer. Plus, FLK# adds the following commands:

E ::= . . . [Classic FLK! expressions]
| (login! w) [Log in user w]
| (logout!) [Log out current user]
| (check-quota) [Check user quota]

(login! w) - logs in the user associated with the identifier w; returns w (returns an error if a user is already

logged in or if the UserID is 0)

(logout!) - logs the current user out; returns the last user ’s identifier (returns an error if there is no user

logged in)

(check-quota) - returns the amount of quota remaining

The definition of E [[(check-quota)]] is:

E [[(check-quota)]] =
λekwq . if w = 0

then error-cont no-user-logged-in w q

else (k (Int �
→Value (q w)) w q) fi

a. [5 points] Write the meaning function clause for E [[(login! E)]].

b. [5 points] Write the meaning function clause for E [[(logout!)]].

c. [5 points] Give the definition of E [[(cell E)]]. Remember you cannot create a cell unless you are
logged in.

d. [5 points] Naturally, Sam Antics wants to embed some “trap doors” into the .GOV platform to enable
him to “learn more about his customers.” One of these trap doors is the undocumented (raise-quota! n)
command, which adds n cells to the quota of the current user and returns 0. Give the definition of
E [[(raise-quota! E)]].

3

Problem 3: Explicit Types [20 points]

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON THE SCHEME/XSP TYPING
RULES GIVEN IN APPENDIX B.

Louis Reasoner has had a hard time implementing letrec in a call-by-name version of Scheme/XSP,
and has decided to use the fixed point operator FIX instead. For example, here the the correct defintion of
factorial in Louis’ approach:

(let ((fact-gen (lambda ((fact (-> (int) int)))
(lambda ((n int)) (if (= n 0) 1 (* n (fact (- n 1))))))))

((proj fix (-> (int) int)) fact-gen))

Thus fix is a procedure that computes the fixed point of a generating function. Ben Bitdiddle has been
called on the scene to help, and he has ensured that Louis’ Scheme/XSP supports recursive types using
RECOF (see Appendix B).

a. [4 points] What is the type of fact-gen?

b. [3 points] What is the type of fix?

c. [3 points] What is the type of ((proj fix (-> (int) int)) fact-gen)?

Ben Bitdiddle defined the call-by-name version of fix to be:

(let ((fix (plambda (t) (lambda ((f T1))
(lambda ((x T2)) (f (x x))) (lambda ((x T2)) (f (x x)))))))

... fix can be used here ...

)

d. [3 points] What is T1?

e. [4 points] What is T2?

f. [3 points] Louis has decided that he would like (fix E) to be a standard expression in his language.
What is the typing rule for (fix E)?

4

Problem 4: Type Reconstruction [20 points]

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON THE SCHEME/R TYPING
RULES AND TYPE RECONSTRUCTION ALGORITHM GIVEN IN APPENDICES C AND D.

With sales declining and customers flocking to competitors’ products, the board of directors at Prophet.com
has decided to oust CTO Louis Reasoner and has assigned you and Alyssa P. Hacker as the pro tempore co-
CTOs. Alyssa believes the secret to regaining market share is to make Scheme/R more Internet-friendly. The
next generation product, code-named Scheme/R 9i (the i stands for Internet), contains socket functionality
to make it easier to write Internet servers.

A socket is like a stream or a channel in that you can read data from and write data to sockets. Sockets
are named by a port number and also have a specific data type associated with them that determines the
type of data that can be transmitted or received over the socket. (For the purpose of this problem, you can
ignore any problems involved with opening more than one socket on the same port.)
We introduce a new type (socketof T) and six new forms:

•	 (int-socket Eport) returns a new integer socket.

•	 (bool-socket Eport) returns a new boolean socket.

•	 (unit-socket Eport) returns a new unit socket.

•	 (symbol-socket Eport) returns a new symbol socket.

•	 (read-all! Esocket Ereader) takes a socket and calls procedure Ereader once for each item remaining
in the socket to be read; returns #u.

•	 (write! Esocket Edatum) Writes Edatum into the socket and returns #u.

Alyssa has written the following Scheme/R type rules to get you started:

A � E : int
[int-socket]

A � (int-socket E) : (socketof int)

A � E : int
[bool-socket]

A � (bool-socket E) : (socketof bool)

A � E : int
[unit-socket]

A � (unit-socket E) : (socketof unit)

A � E : int
[symbol-socket]

A � (symbol-socket E) : (socketof symbol)

A � Esocket : (socketof T)
A � Ereader : (-> (T) unit) [read-all!]

A � (read-all! Esocket Ereader) : unit

A � Esocket : (socketof T)
A � Edatum : T	 [write!]

A � (write! Esocket Edatum) : unit

She has also agreed to write the implementation. Because you are a high-paid 6.821 consultant, your part is
to write the type reconstruction algorithm for these constructs.

a. [4 points] Give the type reconstruction algorithm for (int-socket Eport).

5

b. [4 points] Give the type reconstruction algorithm for (write! Esocket Edatum).

c. [4 points] Give the type reconstruction algorithm for (read-all! Esocket Ereader).

d. [4 points] As part of Louis’s severance agreement, he agreed to stay on for one month to write a proxy
server for Prophet.com’s intranet (by proxy server we mean something that reads data on one socket
and writes it to another). He wrote the following code:

(letrec ((proxy (lambda (socket-in socket-out)

(read-all! socket-in

(lambda (x) (write! socket-out x)))))

(do-proxy-http (lambda () (proxy (symbol-socket 80)

(symbol-socket 8080))))

(do-proxy-ftp (lambda () (proxy (int-socket 20)

(int-socket 8020)))))

(begin

(do-proxy-http)

(do-proxy-ftp)))

Unfortunately, on his way out on his last day, he gives you the code and tells you it doesn’t type check.
Give a semantically equivalent (i.e., preserves procedures and procedure calls) replacement for Louis’
code that does type check.

e. [4 points] Being the astute 6.821 consultant that you are, you also discover that Louis has used a
construct that doesn’t have a type reconstruction algorithm in the book: begin. Give the type recon
struction algorithm for (begin E1 E2).

6

Problem 5: Compiling [20 points]

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON THE META CPS CONVER
SION ALGORITHM GIVEN IN APPENDIX E.

a. [7 points] What source code generated the following output from the Tortoise compiler?

(program

(define *top*

(%closure (lambda (.closure8. x) x)))

(call-closure

top

(%closure

(lambda (.closure7. f .k1.)
(call-closure

.k1.

(%closure

(lambda (.closure6. x .k2.)

(call-closure

(%closure-ref .closure6. 1)

x

(%closure

(lambda (.closure5. .t3.)

(call-closure	 (%closure-ref .closure5. 1)
.t3.
(%closure-ref .closure5. 2)))

(%closure-ref .closure6. 1)

.k2.)))

f))))))

b. [7 points] The meaning of (COND (P1 E1) (P2 E2) (else E3)) is E1 if P1 is true, E2 is P1 is false
and P2 is true, and E3 otherwise.

What is MCPS[[(COND (P1 E1) (P2 E2) (else E3))]]?

c. Louis Reasoner has decided to add garbage collection to a language that previously employed explicit
storage allocation with MALLOC and FREE opeators. His new implementation ignores FREE and
reclaims space using a brand new and correct garbage collector. The garbage collector has more than
twice as much heap space as the old explictly managed heap. As soon as this new version of the
language is released, several programs that used to run fine – crash!!

(i) [3 points] What is the problem?

(ii) [3 points] How can the programmers fix the problems with their programs?

7

�

�

�

�

�
�

Appendix A: Standard Semantics of FLK!

v ∈ Value = Unit + Bool + Int + Sym + Pair + Procedure + Location

k ∈ Expcont = Value Cmdcont
→
γ ∈	 Cmdcont = Store → Expressible

Expressible = (Value + Error)
⊥
Error = Sym

p ∈ Procedure = Denotable → Expcont → Cmdcont

d ∈ Denotable = Value

e ∈ Environment = Identifier → Binding

β ∈	 Binding = (Denotable + Unbound)⊥

Unbound = {unbound}

s ∈ Store = Location → Assignment

l ∈ Location = Nat

α ∈	 Assignment = (Storable + Unassigned)⊥
σ ∈	 Storable = Value

Unassigned = {unassigned}

top-level-cont : Expcont
= λv . λs . (Value →Expressible v)

error-cont : Error Cmdcont→
= λy . λs . (Error →Expressible y)

empty-env : Environment = λI . (Unbound →Binding unbound)

test-boolean : (Bool → Cmdcont) → Expcont
= λf . (λv . matching v

[� (Bool Value b)] (f b)→
� else (error-cont non-boolean)
endmatching)

Similarly for:
test-procedure : (Procedure → Cmdcont) → Expcont
test-location : (Location → Cmdcont) → Expcont
etc.

ensure-bound : Binding → Expcont → Cmdcont
= λβk . matching β

[
� (Denotable →Binding v)] (k v)
[� (Unbound →Binding unbound)] (error-cont unbound-variable)

endmatching
Similarly for:

ensure-assigned : Assignment → Expcont → Cmdcont

Figure 1: Semantic algebras for standard semantics of strict CBV FLK!.

8

�

�

�

same-location? : Location Location Bool = λl1l2 . (l1 =Nat l2)→
next-location : Location

→
Location = λl . (l +Nat 1)→

empty-store : Store = λl . (Unassigned →Assignment unassigned)

fetch : Location → Store → Assignment = λls . (s l)

assign : Location Storable Store Store → → →
= λl1σ s . λl2 . if (same-location? l1 l2)

then (Storable →Assignment σ)
else (fetch l2 s)

fresh-loc : Store Location = λs . (first-fresh s 0)→

first-fresh : Store Location Location→
= λsl . matching (fetch l s)

→

� (Unassigned →Assignment unassigned)][l
� else (first-fresh s (next-location l))

endmatching

lookup : Environment → Identifier → Binding = λeI . (e I)

Figure 2: Store helper functions for standard semantics of strict CBV FLK!.

9

�

�

�

�

� �

T L : Exp → Expressible
E : Exp → Environment → Expcont → Cmdcont
L : Lit Value ; Defined as usual→

[] []E] = E [E] empty-env top-level-cont empty-storeT L [

[] []L] = λek . k L [L]E [

[]I] = λek . ensure-bound (lookup e I) kE [

[[]E [[(proc I E)]] = λek . k (Procedure Value (λdk ′ . E E] [I : d]e k ′))→

[][] e (test-procedure (λp . E E2E [[(call E1 E2)]] = λek . E E1 [][] e (λv . p v k)))

E [[(if E1 E2 E3)]] =
[] [] []λek . E [E1] e (test-boolean (λb . if b then E [E2] e k else E [E3] e k))

[][] e (λv1 . E E2E [[(pair E1 E2)]] = λek . E E1 [][] e (λv2 . k (Pair Value v1, v2)))→ 〈 〉

E [[(cell E)]] = λek . E E[][] e (λvs . k (Location Value (fresh-loc s))→
(assign (fresh-loc s) v s))

[] []E [[(begin E1 E2)]] = λek . E [E1] e (λvignore . E [E2] e k)

[][]E [[(primop cell-ref E)]] = λek . E E e (test-location (λls . ensure-assigned (fetch l s) k s))

E [[(primop cell-set! E1 E2)]]
[] []= λek . E [E1] e (test-location (λl . E [E2] e (λvs . k (Unit Value unit) (assign l v s))))→

E [[(rec I E)]] = λeks . let f = fixExpressible (λa . E E[][] [I : (extract-value a)] e top-level-cont s)
matching f
� (Value →Expressible v)] E E� [[][] [I : v] e k s
� else f
endmatching

extract-value : Expressible → Binding
= λa . matching a

[� (Value →Expressible v)] (Denotable →Binding v)
� else ⊥Binding

endmatching

Figure 3: Valuation clauses for standard semantics of strict CBV FLK!.

10

Appendix B: Typing Rules for SCHEME/XSP
SCHEME/X Rules

: int	 [int]� N

: bool	 [bool]� B

: string	 [string]� S

� (symbol I) : sym	 [sym]

A[I:T] � I : T	 [var]

∀i (A � Ei : Ti)	
[begin]

A � (begin E1	 . . . En) : Tn

: TA � E
[the]

A � (the T E) : T

A � E1 : bool ; A � E2 : T ; A � E3 : T
[if]

A � (if E1 E2 E3) : T

A[I1:T1, ..., In:Tn] � EB : TB
[λ]

A � (lambda ((I1 T1) . . . (In Tn)) EB) : (-> (T1 . . . Tn) TB)

A � EP : (-> (T1 . . . Tn) TB)
∀i (A � Ei : Ti)

[call]
A � (EP E1 . . . En) : TB

∀i (A � Ei : Ti)

A[I1:T1, ..., In:Tn] � EB : TB

[let]
A � (let ((I1 E1) . . . (In En)) EB) : TB

A′ = A[I1:T1, ..., In:Tn]
∀i (A′ � Ei : Ti)
A′ � EB : TB [letrec]

A � (letrec ((I1 T1 E1) . . . (In T1 En)) EB) : TB

A � (∀i [Ti/Ii])Ebody : Tbody
[tlet]

A � (tlet ((I1 T1) . . . (In Tn)) Ebody) : Tbody

∀i (A � Ei : Ti)
[record]

A � (record (I1 E1) . . . (In En)) : (recordof (I1 T1) . . . (In Tn))

A � E : (recordof . . . (I T) . . .)
[select]

A � (select I E) : T

A � E : TE ; T = (oneof . . . (I TE) . . .)
[one]

A � (one T I E) : T

A � Edisc : (oneof (I1 T1) . . . (In Tn))
∀i . ∃j . ((Ii = Itagj) ∧ (A[Ivalj:Ti] � Ej : T))

[tagcase1]
A � (tagcase Edisc (Itag1 Ival1 E1) . . . (Itagn Ivaln En)) : T

A � Edisc : (oneof (I1 T1) . . . (In Tn))
(∃j . (Ii = Itagj)) . A[Ivalj:Ti] � Ej : T∀i |

A � Edef ault : T
[tagcase2]

A � (tagcase Edisc (Itag1 Ival1 E1) . . . (Itagn Ivaln En) (else Edef ault)) : T

11

Rules Introduced by SCHEME/XS to Handle Subtyping

T � T [reflexive-�]

T1 � T2 ; T2 � T3
[transitive-�]

T1 � T3

(T1 � T2)

(T2 � T1)

[≡]

T1 ≡ T2

∀i ∃j ((Ii = Jj) ∧ (Sj � Ti))

(recordof (J1 S1) . . .(Jm Sm)) � (recordof (I1 T1) . . .(In Tn))
[recordof-�]

∀j ∃i ((Jj = Ii) ∧ (Sj � Si))

(oneof (J1 S1) . . .(Jm Sm)) � (oneof (I1 T1) . . .(In Tn))
[oneof-�]

∀i (Ti � Si) ; Sbody � Tbody

(-> (S1 . . .Sn) Sbody) � (-> (T1 . . .Tn) Tbody)
[->-�]

∀T ([T/I1]T1 � [T/I2]T2)

(recof I1 T1) � (recof I2 T2)
[recof-�]

A � Erator : (-> (T1 . . .Tn) Tbody)
∀i ((A � Ei : Si) ∧ (Si � Ti))

[call-inclusion]
A � (Erator E1 . . .En) : Tbody

: SA
S
�
�
E

T
[the-inclusion]

A � (the T E) : T

Rules Introduced by SCHEME/XSP to Handle Polymorphism

A � E : T;
[[∀i (Ii ∈ (FTV (Free-Ids E]])A))

[pλ]
A � (plambda (I1 . . . In) E) : (poly (I1 . . . In) T)

A � E : (poly (I1 . . . In) TE)
[project]

A � (proj E T1 . . . Tn) : (∀i [Ti/Ii]) TE

[[(∀i [Ii/Ji]) S � T, ∀i (Ii ∈ Free-Ids S]])

(poly (J1 . . . Jn) S) � (poly (I1 . . . In) T)
[poly-�]

recof Equivalence
(recof I T) ≡ [(recof I T)/I]T

12

Appendix C: Typing Rules for SCHEME/R

� #u : unit [unit]

� B : bool [bool]

� N : int [int]

� (symbol I) : sym [symbol]

[. . . , I:T, . . .] � I : T [var]

[. . . , I:(generic (I1 . . . In) Tbody), . . .] � I : (∀i [Ti/Ii])Tbody [genvar]

A � Etest : bool ; A � Econ : T ; A � Ealt : T
[if]

A � (if Etest Econ Ealt) : T

A[I1:T1, . . ., In:Tn] � Ebody : Tbody [λ]
A � (lambda (I1 . . . In) Ebody) : (-> (T1 . . . Tn) Tbody)

A � Erator : (-> (T1 . . . Tn) Tbody)
∀i . (A � Ei : Ti) [apply]

A � (Erator E1 . . . En) : Tbody

∀i . (A � Ei : Ti)
A[I1:Gen(T1, A), . . ., In:Gen(Tn, A)] � Ebody : Tbody [let]

A � (let ((I1 E1) . . . (In En)) Ebody) : Tbody

∀i . (A[I1:T1, . . ., In:Tn] � Ei : Ti)
A[I1:Gen(T1, A), . . . In:Gen(Tn, A)] � Ebody : Tbody [letrec]

A � (letrec ((I1 E1) . . . (In En)) Ebody) : Tbody

∀i . (A � Ei : Ti) [record]
A � (record (I1 E1) . . . (In En)) : (recordof (I1 T1) . . . (In Tn))

A � Er : (recordof (I1 T1) . . . (In Tn))
A[I1:T1, . . ., In:Tn] � Eb : T

[with]
A � (with (I1 . . . In) Er Eb) : T

A � (letrec ((I1 E1) . . . (In En)) Ebody) : T
[program]

A � (program (define I1 E1) . . . (define In En) Ebody) : T

Gen(T, A) = (generic (I1 . . . In) T), where {Ii} = FTV (T) − FTE(A)

13

〈 〉
〈 〉
〈 〉

〈 〉

〈 〉
〈 〉

〉

〈 〉

〈 〉
〈	 〉

〈 〉

〉

〈 〉

〉

〈 〉

〈 〉

〉

〈 〉

〈 〉
〈

Appendix D: Type Reconstruction Algorithm for SCHEME/R

[]R [#u] A S = unit, S

[]R [B] A S = bool, S

[]R [N] A S = int, S

R[[(symbol I)]] A S = sym, S

[]R [I] A[I : T] S = T, S

[]R [I] A[I : (generic (I1 . . . In) T)] S = T [?vi/Ii], S (?vi are new)

[]R [I] A S = fail (when I is unbound)

[[R[[(if Et Ec Ea)]] A S =	 let Tt, St = R Et]]A S
in

〈
let St

′
〉
= U(Tt, bool, St)

[[in	 let 〈Tc, Sc = R Ec]]A St
′

[[in	 let Ta, Sa = R Ea]]A Sc

in
〈
let S′

〉
= U(Tc, Ta, Sa)a

in	 Ta, S′
a

[[R[[(lambda (I1 . . . In) Eb)]] A S = let Tb, Sb = R Eb]]A[Ii :?vi] S
in (-> (?v1 . . . ?vn) Tb), Sb (?vi are new)

[[R[[(E0 E1 . . . En)]] A S = let T0, S0 = R E0]]A S
in . . .

[[let	 Tn, Sn = R En]]A Sn−1

in
〈
let Sf = U(T0, (-> (T1 . . . Tn) ?vf), Sn)
in ?vf , Sf (?vf is new)

[[R[[(let ((I1 E1) . . . (In En)) Eb)]] A S = let 〈T1, S1 = R E1]]A S
in . . .

[[let Tn, Sn = R En]]A Sn−1

[[in R Eb]]A[Ii : Rgen(Ti, A, Sn)]Sn

R[[(letrec ((I1 E1) . . . (In En)) Eb)]] A S = let A1 = A[Ii :?vi] (?vi are new)
[[in	 let T1, S1 = R E1]]A1 S

in . . .
[[let	 Tn, Sn = R En]]A1 Sn−1

in
〈
let Sb = U(?vi, Ti, Sn)

[[in R Eb]]A[Ii : Rgen(Ti, A, Sb)] Sb

[[R[[(record (I1 E1) . . . (In En))]] A S = let T1, S1 = R E1]]A S
in . . .

[[let Tn, Sn = R En]]A Sn−1

in (recordof (I1 T1) . . . 	(In Tn)), Sn〉

[[R[[(with (I1 . . . In) Er Eb)]] A S =	 let Tr, Sr = R Er]]A S
in

〈
let Sb

〉
= U(Tr, (recordof (I1 ?vi) . . . (In ?vn)), Sr) (?vi are new)

[[in R Eb]]A[Ii :?vi] Sb

Rgen(T, A, S) = Gen((S T), (subst-in-type-env S A))

14

Appendix E: Meta-CPS Conversion Rules

In the following rules, grey mathematical notation (like λv) and square brackets [] are used for
“meta-application”, which is evaluated as part of meta-CPS conversion. Code in BLACK TYPEWRITER FONT is
part of the output program; meta-CPS conversion does not evaluate any of this code. Therefore, you can
think of meta-CPS-converting an expression E as rewriting MCPS[]] until no grey is left.[E

E ∈ Exp
m ∈ Meta-Continuation = Exp → Exp

meta-cont → exp : (Exp → Exp) → Exp = [λm . (LAMBDA (t)[m t])]
exp → meta-cont : Exp → (Exp → Exp) = [λE . [λV . (CALL E V)]]

meta-cont→exp [λV . (CALL K V)] = K

MCPS : Exp → Meta-Continuation → Exp

[IMCPS[]] = [λm . [m I]]

MCPS[][L] = [λm . [m L]]

MCPS[[(LAMBDA (I1 ... In) E)]]
= [λm . [m (LAMBDA (I1 ... In .Ki.)

[MCPS[][E] [exp → meta-cont .Ki.]])]]

MCPS[[(CALL E1 E2)]]
= [λm . [MCPS[[E1]] [λv1 .

[MCPS[[E2]] [λv2 .
(CALL v1 v2 [meta-cont → exp m])]]]]]

MCPS[[(PRIMOP P E1 E2)]]
= [λm . [MCPS[[E1]] [λv1 .

[MCPS[[E2]] [λv2 .
(LET ((.Ti. (PRIMOP P v1 v2)))

[m .Ti.])]]]]]

MCPS[[(IF Ec Et Ef)]]
= [λm . [MCPS[[Ec]] [λv1 .

(LET ((K [meta-cont → exp m]))
(IF v1

[MCPS[[Et]] [exp → meta-cont K]]
[MCPS[[Ef]] [exp → meta-cont K]]))]]]

MCPS[[(LET ((I Edef)) Ebody)]]
= [λm . [MCPS[[Edef]] [λv .

(LET ((I v)) [MCPS[[Ebody]] m])]]]

15

Appendix F: Match Desugaring

D[[(match E (P1 E1) ... (Pn En))]] =
(let ((Itop E))

Dclauseseq [[[P1, . . . , Pn], [E1, . . . , En], Itop, (lambda () (error "No pattern matches!"))]])

Dclauseseq [[[], [], V, F]] = (F)
Dclauseseq [[P1 . Prest , E1 . Erest , V, F]] =

(let ((Ifail (lambda () ; If P1 doesn’t match, try the other clauses
Dclauseseq [[Prest , Erest , V, F]])))

Dpat[[P1, V, E1, Ifail]])

Dpat[[L, V, S, F]] = (if (equal? LIT L V) S (F))

Dpat[[_, V, S, F]] = S

Dpat[[I, V, S, F]] = (let ((I V)) S)

Dpat[[(I P1 ... Pn), V, S, F]] =

(I~ V

(lambda (I1 ... In) ; Match the object’s component parts

Dpatseq [[[P1, . . . , Pn], [I1, . . . , In], S, F]])

F)

Dpatseq [[[], [], S, F]] = S
Dpatseq [[P1 . Prest , I1 . Irest , S, F]] =

Dpat[[P1, I1,
Dpatseq [[Prest , Irest , S, F]], ; If P1 matches, continue trying to match the rest
F]]

16

