
6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

Final Examination Solutions 2001

Problem 1: Short Answer [20 points]

a. Given the following domains:

A = {1}⊥

B = {a, b}⊥

(i) [2 points]How many set theoretic functions are there in A → B?

Solution: 9

(ii) [2 points] How many continuous functions are there in A → B?

Solution: 5

b.	 In Scheme/R (Scheme with type reconstruction) give the most general type schemes of the following
expressions, or state why the expression does not have a type:

(i) [1 points]

(lambda (f) (lambda (g) (lambda (x) (g (f x)))))

Solution:

(generic (t1, t2, t3) (-> ((-> (t1) t2)) (-> ((-> (t2) t3)) (-> (t1) t3))))

(ii) [1 points]

(lambda (x) (x x))

Solution: Self application, no type

(iii) [1 points]

(letrec ((f (lambda (x) (if (id x) (id 0) (id 1))))
(id (lambda (y) y)))

(f #t))

Solution: Attempted polymorphic use of id in letrec bindings, no type

(iv) [1 points]

(lambda (id) (if (id #t) (id 0) (id 1)))

Solution: First class polymorphism, no type

c.	 Give the equivalent Scheme/XSP expression, and the type thereof, for each of the expressions in the
previous part (part b).

(i) [2 points]

Solution:

(plambda (t1 t2 t3)
(lambda ((f (-> (t1) t2)))

(lambda ((g (-> (t2) t3)))
(lambda ((x t1))

(g (f x))))))

(poly (t1 t2 t3)
(-> ((-> (t1) t2)) (-> ((-> (t2) t3)) (-> (t1) t3))))

(ii) [2 points]

Solution:

expression:
(plambda (t1)

(lambda ((x (recof t2 (-> (t2) t1))))
(x x)))

type:

(poly (t1) (-> (recof t2 (-> (t2) t1)) t1))

(iii) [2 points]

Solution:

expression:

(letrec ((f (-> (bool) int) (f (lambda (x)

(if	 ((proj id bool) x)
((proj id int) 0)
((proj id int) 1)))))

(id (poly (t) (-> (t) t)) (plambda (t) (lambda ((y t)) y))))
(f #t))

type:
int

2

(iv) [2 points]

Solution:

expression:
(lambda ((id (poly (t) (-> (t) t))))

(if ((proj id bool) #t) ((proj id int) 0) ((proj id int) 1)))

type:

(-> (poly (t) (-> (t) t)) int)

d. [2 points] Give the desugaring of the following Scheme/R expression

(match z
((cons 1 x) x)
(x (cons 1 x)))

Solution:

(let ((Itop z))
(let ((Ifail (lambda () (let ((x Itop)) (cons 1 x)))))

(cons~ Itop (lambda (I1 I2)
(if	 (= I1 1)

(let ((x I2)) x)
(Ifail)))

Ifail)))

e.	 [2 points] Use define-datatype to define the (queueof T) datatype that represents a queue with a list.
For example, a (queueof int) would be represented by an integer list.

Solution:

(define-datatype (queueof T) (list->queue (listof T))))

3

[]

[]

[]

[]
[]

[]

[]

Problem 2: State: FLK# [20 points]

Sam Antics is working on a new language with hot new features that will appeal to government customers.
He was going to base his language on Caffeine from Moon Microsystems, but negotiations broke down. He
has therefore decided to extend FLK! and has hired you, a top FLK! consultant, to assist with modifying
the language to support these new features. The new language is called FLK#, part of Sam Antics’ new
.GOV platform. The big feature of FLK# is user tracking and quotas in the store. An important customer
observed that government users tended to use the store carelessly, resulting in expensive memory upgrades.
To improve the situation, the FLK# store will maintain a per-user quota. (A quota restricts the number of
cells a particular user can allocate.) The Standard Semantics of FLK! are changed as follows:

w ∈ UserID = Int
q ∈ Quota = UserID → Int
γ ∈ Cmdcont = UserID → Quota → Store → Expressible

error-cont : Error → Cmdcont
= λy . λw . λq . λs . (Error �→Expressible y)

UserID is just an integer. User ID 0 is reserved for the case when no one is logged in. Quota is a function
that when given a UserID returns the number of cells remaining in the user’s quota. The quota starts at
100 cells, and a user’s quota is tracked throughout the lifetime of the program (i.e., the quota is not reset
upon logout). Cmdcont has been changed to take the currently logged in user ID, the current quota, and
the current store to yield an answer. Plus, FLK# adds the following commands:

E ::= . . . [Classic FLK! expressions]
| (login! w) [Log in user w]
| (logout!) [Log out current user]
| (check-quota) [Check user quota]

(login! w) - logs in the user associated with the identifier w; returns w (returns an error if a user is already

logged in or if the UserID is 0)

(logout!) - logs the current user out; returns the last user’s identifier (returns an error if there is no user

logged in)

(check-quota) - returns the amount of quota remaining

The definition of E [(check-quota)] is:

E [(check-quota)] =
λekwq . if w = 0

then error-cont no-user-logged-in w q
else (k (Int �→Value (q w)) w q) fi

a. [5 points] Write the meaning function clause for E [(login! E)].

Solution:

E [(login! E)] =

λek . E [E] e (test-int λiw . if (w = 0) and (i �= 0)
then (k (Int �→Value i) i)
else error-cont already-logged-in w fi)

b. [5 points] Write the meaning function clause for E [(logout!)].

Solution:
E [(logout!)] =

λekw . if (w = 0) then (error-cont not-logged-in w) else (k (Int �→Value w) 0) fi

4

[]

[]
[]

[]

[]
[]

c.	 [5 points] Give the definition of E [(cell E)]. Remember you cannot create a cell unless you are
logged in.

Solution:
E [(cell E)] =

λek . E [E] e
(λvw1qs .	 if (w1 = 0) or ((q w1) = 0)

then error-cont error w1 q s
else (k (Location �→Value (fresh-loc s))

w1

(λw2 .	 if w2 = w1

then (q w1) -1
else (q w1) fi)

(assign (fresh-loc s) v s))
fi)

d.	 [5 points] Naturally, Sam Antics wants to embed some “trap doors” into the .GOV platform to enable
him to “learn more about his customers.” One of these trap doors is the undocumented (raise-quota! n)
command, which adds n cells to the quota of the current user and returns 0. Give the definition of
E [(raise-quota! E)].

Solution:

E [(raise-quota! E)] =

λek . E [E] e (test-int λiw1q .	 if w1 = 0
then error-cont error-no-user-logged-in w q
else (k (Int �→Value 0) w1

λw2 . if w2 = w1 then (q w1) + i else (q w1)) fi
fi)

5

Problem 3: Explicit Types [20 points]

Louis Reasoner has had a hard time implementing letrec in a call-by-name version of Scheme/XSP,
and has decided to use the fixed point operator FIX instead. For example, here the the correct defintion of
factorial in Louis’ approach:

(let ((fact-gen (lambda ((fact (-> (int) int)))
(lambda ((n int)) (if (= n 0) 1 (* n (fact (- n 1))))))))

((proj fix (-> (int) int)) fact-gen))

Thus fix is a procedure that computes the fixed point of a generating function. Ben Bitdiddle has been
called on the scene to help, and he has ensured that Louis’ Scheme/XSP supports recursive types using
RECOF (see Appendix ??).

a. [4 points] What is the type of fact-gen?

Solution:

(-> ((-> (int) int)) (-> (int) int))

b. [3 points] What is the type of fix?

Solution:

(poly (t) (-> ((-> (t) t)) t))

c. [3 points] What is the type of ((proj fix (-> (int) int)) fact-gen)?

Solution:

(-> (int) int)

Ben Bitdiddle defined the call-by-name version of fix to be:

(let ((fix (plambda (t) (lambda ((f T1))
(lambda ((x T2)) (f (x x))) (lambda ((x T2)) (f (x x)))))))

... fix can be used here ...

)

d. [3 points] What is T1?

Solution:

T1 = (-> (t) t)

e. [4 points] What is T2?

Solution:

T2 = (recof x (-> (x) t))

6

f.	 [3 points] Louis has decided that he would like (fix E) to be a standard expression in his language.
What is the typing rule for (fix E)?

Solution:

A � E : (-> (T) T)

A � (fix E) : T
[fix]

7

[] []

Problem 4: Type Reconstruction [20 points]

With sales declining and customers flocking to competitors’ products, the board of directors at Prophet.com
has decided to oust CTO Louis Reasoner and has assigned you and Alyssa P. Hacker as the pro tempore co-
CTOs. Alyssa believes the secret to regaining market share is to make Scheme/R more Internet-friendly. The
next generation product, code-named Scheme/R 9i (the i stands for Internet), contains socket functionality
to make it easier to write Internet servers.

A socket is like a stream or a channel in that you can read data from and write data to sockets. Sockets
are named by a port number and also have a specific data type associated with them that determines the
type of data that can be transmitted or received over the socket. (For the purpose of this problem, you can
ignore any problems involved with opening more than one socket on the same port.)
We introduce a new type (socketof T) and six new forms:

• (int-socket Eport) returns a new integer socket.

• (bool-socket Eport) returns a new boolean socket.

• (unit-socket Eport) returns a new unit socket.

• (symbol-socket Eport) returns a new symbol socket.

•	 (read-all! Esocket Ereader) takes a socket and calls procedure Ereader once for each item remaining
in the socket to be read; returns #u.

• (write! Esocket Edatum) Writes Edatum into the socket and returns #u.

Alyssa has written the following Scheme/R type rules to get you started:

A � E : int

A � (int-socket E) : (socketof int)
[int-socket]

A � E : int

A � (bool-socket E) : (socketof bool)
[bool-socket]

A � E : int

A � (unit-socket E) : (socketof unit)
[unit-socket]

A � E : int

A � (symbol-socket E) : (socketof symbol)
[symbol-socket]

A � Esocket : (socketof T)
A � Ereader : (-> (T) unit) [read-all!]

A � (read-all! Esocket Ereader) : unit

A � Esocket : (socketof T)
A � Edatum : T [write!]

A � (write! Esocket Edatum) : unit

She has also agreed to write the implementation. Because you are a high-paid 6.821 consultant, your part is
to write the type reconstruction algorithm for these constructs.

a. [4 points] Give the type reconstruction algorithm for (int-socket Eport).

Solution:

R [(int-socket E)] A S =	 let �T, S1� = R [E] A S
in �(socketof int), U (T, int, S1)�

8

[] []
[]

[] []
[]

b. [4 points] Give the type reconstruction algorithm for (write! Esocket Edatum).

Solution:

R [(write! Esocket Edatum)] A S = let �T1, S1� = R [Esocket] A S
in let �T2, S2� = R [Edatum] A S1

in let S3 = U (T1, (socketof ?t), S2)
in �unit, U (T2, ?t, S3)�

c. [4 points] Give the type reconstruction algorithm for (read-all! Esocket Ereader).

Solution:

R [(read-all! Esocket Ereader)] A S = let �T1, S1� = R [Esocket] A S
in let �T2, S2� = R [Ereader] A S1

in let S3 = U (T1, (socketof ?t), S2)
in �unit, U (T2, (-> (?t) unit), S3)�

d.	 [4 points] As part of Louis’s severance agreement, he agreed to stay on for one month to write a proxy
server for Prophet.com’s intranet (by proxy server we mean something that reads data on one socket
and writes it to another). He wrote the following code:

(letrec ((proxy (lambda (socket-in socket-out)
(read-all! socket-in

(lambda (x) (write! socket-out x)))))
(do-proxy-http (lambda () (proxy (symbol-socket 80)

(symbol-socket 8080))))
(do-proxy-ftp (lambda () (proxy (int-socket 20)

(int-socket 8020)))))
(begin

(do-proxy-http)
(do-proxy-ftp)))

Unfortunately, on his way out on his last day, he gives you the code and tells you it doesn’t type check.
Give a semantically equivalent (i.e., preserves procedures and procedure calls) replacement for Louis’
code that does type check.

Solution: It doesn’t type check because in the definition of do-proxy-http, proxy is resolved to have
type (-> ((socketof symbol) (socketof symbol)) unit), and thus canont be used polymorphi
cally by (do-proxy-ftp) to have type (-> ((socketof int) (socketof int)) unit).

The following code does not exhibit this problem.

(let ((proxy (lambda (socket-in socket-out)
(read-all! socket-in

(lambda (x) (write! socket-out x))))))
(let (do-proxy-http (lambda () (proxy (symbol-socket 80)

(symbol-socket 8080))))
(do-proxy-ftp (lambda () (proxy (int-socket 20)

(int-socket 8020)))))
(begin

(do-proxy-http)
(do-proxy-ftp))))

9

[] []

[]

e.	 [4 points] Being the astute 6.821 consultant that you are, you also discover that Louis has used a
construct that doesn’t have a type reconstruction algorithm in the book: begin. Give the type recon
struction algorithm for (begin E1 E2).

Solution:

R [(begin E1E2...En)] A S = let �T1, S1� = R [E1] A S
in . . .

let �Tn, Sn� = R [En] A Sn−1

in �Tn, Sn�

10

[]

[]

[]

[]
[]

[]
[]

Problem 5: Compiling [20 points]

a. [7 points] What source code generated the following output from the Tortoise compiler?

(program
(define *top*

(%closure (lambda (.closure8. x) x)))
(call-closure
top
(%closure
(lambda (.closure7. f .k1.)
(call-closure
.k1.
(%closure
(lambda (.closure6. x .k2.)

(call-closure
(%closure-ref .closure6. 1)
x
(%closure
(lambda (.closure5. .t3.)

(call-closure	 (%closure-ref .closure5. 1)
.t3.
(%closure-ref .closure5. 2)))

(%closure-ref .closure6. 1)
.k2.)))

f))))))

Solution:

(lambda (f) (lambda (x) (f (f x))))

b.	 [7 points] The meaning of (COND (P1 E1) (P2 E2) (else E3)) is E1 if P1 is true, E2 is P1 is false
and P2 is true, and E3 otherwise.

What is MCPS [(COND (P1 E1) (P2 E2) (else E3))]?

Solution:

MCPS [(COND (P1 E1) (P2 E2) (else E3))]
= λm .

(let ((k (lambda (v) [m v])))
λm . MCPS [P1] [λv1 .

(IF v1

[MCPS [E1][exp → meta-cont k]]
[MCPS [P2][λv2 .

(IF v2

[MCPS [E2][exp → meta-cont k]]
[MCPS [E3][exp → meta-cont k]])]])]

c.	 Louis Reasoner has decided to add garbage collection to a language that previously employed explicit
storage allocation with MALLOC and FREE opeators. His new implementation ignores FREE and
reclaims space using a brand new and correct garbage collector. The garbage collector has more than
twice as much heap space as the old explictly managed heap. As soon as this new version of the
language is released, several programs that used to run fine – crash!!

11

(i) [3 points] What is the problem?

Solution: The programs crash because they run out of storage. Pointers to unused storage are
not being destroyed, and thus the GC can not reclaim storage that was previosly freeded with
FREE.

(ii) [3 points] How can the programmers fix the problems with their programs?

Solution: Zero all pointers to storage that are no longer in use.

12

