
[] []
[]

6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

Final Examination Solutions 2002

Problem 1: Short Answer [29 points]

a.	 [4 points] Give a desugaring from a FLAVAR! program P to a FLAVAR! program P � that has the
following property: P evaluated with call-by-value semantics has the same behavior as P � when eval
uated with call-by-name semantics.

Solution: D [(proc I E)] = (proc I D [(begin (primop cell-set! (cell I) I) E)])
For all other E, D [E] operates by structural induction.

b.	 [3 points] Give two domains D and E such that the number of set-theoretic functions from D to E is
infinite, but the number of continuous functions is finite.

Solution: D = integers, with ≤ as the ordering; E = bool (unordered)

c.	 [3 points] Consider a new construct smart-compose to FL/R. (smart-compose f g) has the following
behavior: it evaluates to whichever of (compose f g) or (compose g f) type checks. If both type-
check, it chooses one of them arbitrarily. Why could type reconstruction using Appendix D fail even
when a type for smart-compose is reconstructible?

Solution: Type reconstruction could fail if both (compose f g) and (compose g f) type check (for
instance, if f has type α → β and g has type β → α, for some concrete α and β). An expression that uses
(smart-compose f g) might require it to have either α → α or β → β, but type reconstruction might
choose the other type. Correcting this problem would require adding backtracking to the algorithm.

d. [2 points] What is a broken heart, and what is it used for?

Solution: A broken heart is a forwarding pointer, used in cpoying garbage collection. After an object
has been moved, it is replaced by the broken heart, so that references to it can be updated to use the
new copy.

e. [2 points] Give the reconstructed type of the following expression.

(lambda (f g)
(f (f g 2)

(g 2)))

Solution:

g: int -> int
f: (int -> int) x int -> (int -> int)

overall: ((int -> int) x int -> (int -> int)) x (int -> int) -> (int -> int)

f. [2 points] What is the purpose of closure conversion?

Solution: It enables lifting by eliminating free variables and making each procedure self-contained,
so that the procedure definition may appear anywhere in the program.

g. [2 points] Consider the following FLAVAR! expression

(let ((x 3)
(foo (lambda (q) (+ x y)))

(letrec ((y x)
(z (let ((x 15)) (lambda (q) (z q)))))

(let ((x 16)
(y x))

(foo z))))

(i) [1 points] What is its value, or what error occurs, under call-by-value static scoping?

Solution: Error: y is not bound

(ii) [1 points] What is its value, or what error occurs, its value under call-by-value dynamic scoping?

Solution: 19

h. [2 points] Give the value of the following expression, or state what error occurs.

(let ((x (lambda (x) (+ x 1))))
(let ((y (lambda (y) (y x))))

(let ((y (let ((y y)) y)))
(let ((x (y (lambda (x) x))))

(x 5)))))

(i) [1 points] When evaluated under call-by-value static scoping.

Solution: 6. Note that (let ((y (let ((y y)) y))) ...) has no effect on the evaluation of the
body.

(ii) [1 points] When evaluated under call-by-value dynamic scoping.

Solution: 6, under identical control flow to that of the static case.

Again, (let ((y (let ((y y)) y))) ...) has no effect.

Furthermore, (y (lambda (x) x)) is evaluated outside the scope of the last (let ((x ...)) ...).

i.	 [3 points] Louis Reasoner has an application in which at least half of memory is garbage each time the
garbage collector is invoked. He concludes that the use of two spaces is wasteful: he can modify the
garbage collector to work in place. Explain why Louis’s proposal does not work.

Solution: One problem is that it may be impossible to relocate objects, obviating some advantages of
a copying garbage collector. For instance, there may be an object that is larger than any contiguous
free chunk of memory.

2

[]
[]

j.	 [6 points] Give a type reconstruction algorithm rule for “call with current continuation” (cwcc). You
may find referring to Appendix D helpful.

Here is an example of cwcc:

(+ (cwcc (lambda (exit) 100))
(cwcc (lambda (exit) (+ 2 (exit 4)))))

⇒ 104

Solution:

R [(cwcc p)] A S =

let �Te, S1� = R [E] A S
in let S2 = U (Te, (-> (-> (?vr) ?vignore) ?vr))

in �?vr , S2� (?vr and ?vignore are new)

3

Problem 2: Probabilistic Types [12 points]

Sensing he won’t have time to finish his SCHEME/R killer app before Christmas, Ben Bitdiddle buys a
subroutine from Subroutines ‘R’ Us. While Ben’s program was completely deterministic, the subroutine he
bought is randomized. The fine print states that the subroutine returns the correct answer 99 44

100 % of the
time. Ben worries about the correctness of his program, since he uses this subroutine many times. But before
he gets to answer his own question, his mind wanders off to another subroutine he purchased.

To deal with this problem, you will create a type/effect system. The new type system has judgments
like the following:

A � E : T % P,

which is pronounced, “in the type environment A, expression E has type T and probability of correctness at
least P .” The types in this new type system are all inherited from SCHEME/R, with one difference: a function
type now contains a probability of correctness. We write this as (-> p (T1 . . . Tn) Tb), which means that
when this procedure is applied to arguments a1 . . . an, it evaluates to the correct value with probability p.

SCHEME/R always operates correctly and deterministically; however, it is possible to code randomized
algorithms using it. When you use a randomized algorithm, you add a probabilistic type for it (specified by
the manufacturer) to the typing environment; then, you use the type/effect system to compute the proba
bility that your whole program operates correctly.

The following type/effect judgments

� N : int % 1
� B : bool % 1

indicate that numeric and boolean literals are guaranteed to be correct. You should assume that if any subex
pression evaluates incorrectly, then the whole program evaluates incorrectly: subsequent wrong answers
never cancel out previous ones.

a. [3 points] Give a type/effect rule for if.

Solution:
A � E : bool % p ; A � E1 : T % p1 ; A � E2 : T % p2

A � (if E E1 E2) : T % p · min(p1, p2)
[if]

b. [3 points] Give a type/effect rule for lambda.

Solution:
A[I1:T1, ..., In:Tn] � EB : TB % pB

A � (lambda (I1 . . . In) EB) : (-> pB (T1. . . Tn)TB) % 1
[λ]

Note that there are no % annotations in the typing environment; they are not necessary there.

c. [3 points] Give a type/effect rule for application.

Solution:

A � Erator : (-> pl (T1 . . . Tn) Tbody) % pr

∀i . (A � Ei : Ti % pi)
A � (Erator E1 . . . En) : Tbody % pr · pl · p1 · · · pn

If you wished to support subtyping, you could instead write:

A � Erator : (-> pl (T1
� . . . T � n) Tbody) % pr

∀i . (A � Ei : Ti % pi)
∀i . (Ti � Ti

�)
A � (Erator E1 . . . En) : Tbody % pr · pl · p1 · · · pn

[apply]

[apply]

4

d. [3 points] Give a subtyping rule for procedures by revising the ->-� rule of Appendix B (page 18).

Solution:

∀i (Ti � Si)
Sbody � Tbody

ps ≥ pt

(-> ps (S1 . . .Sn) Sbody) � (-> pt (T1 . . .Tn) Tbody)
[->-�]

5

Problem 3: Strictness Effects [17 points]

As presented in class, effect systems indicate what side effects may result from evaluation of an expression.
In a lazy language, a natural extension to this notion is whether a particular argument to a procedure is
ever evaluated.

In this problem, you will write type reconstruction rules that determine whether a particular expression
evaluates a given argument. There are three possibilities for each argument: the procedure may always
evaluate the argument, the procedure may never evaluate the argument, or the procedure may sometimes
evaluate the argument; we represent these three values as A (for always), N (for never), and M (for maybe).

Typing judgments have the form
A � E : T & S ,

where S maps variables to strictness values. (You may assume that S always contains an entry for every
variable that is ever used in the program, and furthermore that all variables are uniquely named. In other
words, you don’t have to worry about scoping and variable capture.)

For example, a reasonable judgment in a program with 4 variables a, b, c, and d might be

A � E : T & {a : M, b : A, c : N, d : M } .

and a reasonable typing rule might be

A � E1 : T & S1 A � E2 : T & S2

A � (strange E1 E2) : T & S1 AtoN(S2)
[strange]

where is taken elementwise and AtoN is defined below.
Procedure types have the following form: (-> Ids S (T1 ... Tn) T). “Ids” is a list of the procedure’s

parameter names. S is the strictness of the procedure (over all program variables, as usual).
Your task is to extend the typing rules of Appendix C to also compute a strictness environment.
You may find one or more of the following auxiliary procedures to be helpful. However, you are not

permitted to cascade them (nor do you need to!); don’t write, for example, “AtoM(NtoA(S))”.

allA returns a new mapping in which every variable is bound to A.

allN returns a new mapping in which every variable is bound to N .

allM returns a new mapping in which every variable is bound to M .

AtoN returns a new mapping in which bindings to A have been replaced by N .

AtoM returns a new mapping in which bindings to A have been replaced by M .

NtoA returns a new mapping in which bindings to N have been replaced by A.

NtoM returns a new mapping in which bindings to N have been replaced by M .

MtoA returns a new mapping in which bindings to M have been replaced by A.

MtoN returns a new mapping in which bindings to M have been replaced by N .

For example,
MtoN({a : M, b : A, c : N, d : M }) = {a : N, b : A, c : N, d : N } .

a.	 [2 points] Draw the domain whose elements are {A,N, M }: draw the elements, and draw a line for
each non-transitive � relationship, with the greater element higher on the page. (Hint: No element is
greater than A.)

Solution: A � M � N

b. [4 points] Give the typing rule for if.

Solution:

A � E1 : bool & S1 ; A � E2 : T & S2 ; A � E3 : T & S3

A � (if E1 E2 E3) : T & S1 AtoM (S2) AtoM(S3)
[if]

6

c.	 [4 points] Give the typing rule for lambda.

Solution:

A[I1:T1, ..., In:Tn] � EB : TB & SB

A � (lambda ((I1 T1) . . . (In Tn)) EB) : (-> (I1 . . . In) SB (T1 . . . Tn) TB) & AllN(SB)
[λ]

d.	 [4 points] Give the typing rule for application.

Solution:

Here is another way to write the same thing:

A � Erator : (-> (I1 . . . In) Sbody (T1
� . . . T � n) Tbody) & Srator

∀i . (A � Ei : Ti & Si)
∀i . (Ti � Ti

�)
n 	 if Sb(i) = A, then Si

if Sb(i) = N, then allN (Si)A � (Erator E1 . . . En) : Tbody & Sr (Sb \ {I1, . . . , In})
i=1

 if Sb(i) = M, then AtoM (Si))
[apply]

e. [3 points] Give the typing rule for (application of) +.

Solution:

∀i . (A � Ei : int & Si)
n [+]

A � (+ E1 ...En) : int & i=1 Si

7

Problem 4: Nosy FLK! [25 points]

The Department of Homeland Security has adopted FLK! as its official programming language, for two
reasons. First, FLK! has no foreign function interface, and the DHS disapproves of anything foreign. Second,
and more importantly, FLK! has no “private” declaration. The DHS reasons that programmers who have
done nothing wrong should have nothing to hide, and the DHS insists on access to any data at any time for
any purpose. Imagine the DHS’s disappointment when they realize that shadowing can make a variable
binding inaccessible! For example, consider the following code that you might wish to execute:

;; Send a love letter

(let ((letter "Dear sweetheart, ... With love, Snookums"))

(let ((mail-agent (mail-sending-program letter)))
(let ((letter "s")) ; The "s" key sends a message
;; DHS INSERTS CODE HERE
(apply-keystroke letter mail-agent))))

It is a serious problem that, at the specified point in the program, spy agencies cannot read the text of
your letter. Accordingly, DHS hires Ben Bitdiddle to add a new construct, up-env, to FLK!; the new language
is called “Nosy FLK!”. up-env permits access to shadowed variables. It takes a number n and an identifier,
and it looks up the identifier in the nth parent environment of the current one. For example, consider the
following DHS-inserted code:

(up-env 0 letter) equivalent to letter; returns "s"
(up-env 1 letter) returns "Dear sweetheart ...", which is the value of letter

in the parent environment (in which mail-agent is also bound)
(up-env 2 letter) also returns "Dear sweetheart ...", which is the value of letter

in the outermost environment
(up-env 3 letter) issues an “unbound identifier” error

With the work only half-finished, DHS’s hidden microphones overhear Ben Bitdiddle talking about
“sexps,” and he is taken away as a suspected pornographer. In order to demonstrate your patriotism, you
agree to complete work on this language extension.

a.	 [4 points] Consider the following code. (We use syntactic sugar such as let for convenience and
clarity.)

(let ((n 11))
(letrec ((fact (let ((n 9))

(lambda (n)
(print (up-env 1 n))
(print (up-env 2 n))
(if (= n 0)

1
(* n (fact (- n 1))))))))

(let ((n 7))
(fact 5))))

The first two executions of fact print a total of 4 values.

(i) [2 points] Assuming static scoping, what are the first four values printed?

Solution: 9, 11, 9, 11

(ii) [2 points] Assuming dynamic scoping, what are the first four values printed?

Solution: 7, 11, 5, 7

8

[]

[]

[]

[] []

[]

[] []

[] []

b. [15 points]

We modify the denotational semantics of Appendix A to support the new up-env form by adding the
following new domain:

nEnvironment = Environment × nEnvironment⊥

We also have the following constructor and destructor helper functions:

make-nenv : Environment × nEnvironment⊥ → nEnvironment

nenv-env : nEnvironment → Environment

nenv-parent : nEnvironment → nEnvironment⊥

With these domains in hand, one can extend the denotational semantics to handle up-env. Note that

your new definitions for E will take an nEnvironment instead of an Environment.

(i) [3 points] Define nlookup, which looks up an identifier:
nlookup : (nEnvironment → Identifier → Integer) → Binding

You may use lookup as a subroutine.

Solution: There are two possible solutions that permit answering the remainder of the problem.

The more efficient solution, which does not copy environments, is

nlookup : nEnvironment → Identifier → Binding

= λαIn .	 if n > 0

then (lookup (nenv-parent α) I (n − 1))
else let l = (lookup (nenv-env α) I)

in if l �= unbound
then l
else let p = (nenv-parent α)

in if p =⊥
then unbound
else (lookup p I 0)

The solution that does copy environments is
nlookup : nEnvironment → Identifier → Binding
= λαIn .	 if n > 0

then (lookup (nenv-parent α) I (n − 1))
else (lookup (nenv-env α) I)

(ii) [3 points] What is E [I]?

Solution: E [I] = λek . (ensure-bound (nlookup e I 0) k)

(iii) [3 points] What is E [(up-env E I)]?

Solution: E [(up-env E I)] = λek . E [E] e (λv . (with-integer (λn . (ensure-bound (nlookup e I n) k))))

(iv) [3 points] What is E [(proc I E)]?

Solution: This solution works with the non-environment-copying definition of nlookup:

E [(proc I E)] = λek . (k (Procedure �→Value (λdk� . E [E] (make-nenv {}[I : d] e) k�))

This solution works with the environment-copying definition of nlookup:

E [(proc I E)] = λek . (k (Procedure �→Value (λdk� . E [E] (make-nenv (nenv-env e)[I : d] e) k�))

9

[]

[] [] []

[] []
[]

[]

[]
[] []

[]
[] []

[] [] []

(v) [3 points] What is E [(call E1 E2)]?

Solution: E [(call E1 E2)] = λek . E [E1] e (test-proc (λp . E [E1] e (λv . (p w k))))

Modify the denotational semantics of Appendix A to support the new up-env form. Show any changes
that you must make to the denotational semantics; do not mention any domains or rules that remain
unchanged.

c.	 [6 points] Before being dragged away, Ben began to work on a desugaring from Nosy FLK! to FLK!.
Unfortunately, most of Ben’s notes were confiscated; all that remains is one auxiliary function fresh-I-n,
the rule for D (in terms of a helper desugaring D�), and one rule from the helper desugaring D�:

fresh-I-n : Identifier × Integer → Identifier

fresh-I-n returns the same unique fresh identifier for each invocation with the same arguments.

D [E] = D� [E] 0 for all E

D� [I] n = I

Furthermore, you find a comment that his preliminary solution is quite constrained: the numeric ar
gument to up-env must be a literal number; the number must indicate an environment that explicitly
binds the identifier; the desugaring assumes static scoping; and the desugaring fails in the presence
of side effects. (You may provide a solution better than Ben’s, but you are not required to. You must
reuse the two existing rules, however.)

Write the rules for the auxiliary desugaring D� [E]n that helps to convert Nosy FLK! to FLK!. (Don’t
introduce any additional helper functions.) Omit any rules that merely implement the structural in
duction by applying the desugaring to each subexpression, with the same arguments as were used
for the full expression. Assume that both Nosy FLK! and FLK! use call-by-value semantics.

Solution:

D� [(up-env n1 I)] n = fresh-I-n(I, n − n1)
D� [(proc I E)] n = (proc I (call (proc fresh-I-n(I, n) D� [E] n + 1) I))

A slightly less elegant solution is

D� [(up-env n1 I)] n = fresh-I-n(I, n − n1)
D� [(proc I E)] n = (proc (fresh-I-n(I, n)) (proc (I) D� [E] n + 1))

D� [(call E1 E2)] n = (call (proc (If) (call (call (D� [E1] n) If) If)) (D� [E2] n))

where If is fresh

10

Problem 5: Pragmatics [17 points]

Space-Savers, Inc., is working on reducing the run-time space requirements of compiled programs written
in a functional subset of SCHEME. The company is particularly interested an expression with the following
form:

(let ((f (lambda (b) E)))
(primop + (call f 1) (call f 2)))

where a is the only free variable of (lambda (b) E). (You should assume that a is bound somewhere in the
surrounding context of this example and all subsequent examples.)

The company uses a compiler that is composed of a series of source-to-source transforms. The closure
conversion phase of their compiler generates flat closures for all lambda expressions. Recall that a flat clo
sure is a tuple containing a code component and the values of all free variables referenced by the code
component. Closure conversion produces an expression in which closures are explicitly allocated with the
closure primop and the values of free variables are explicitly extracted from closures by the closure-ref
primop:

(let ((f (%closure (lambda (.closure.73. b) Eclosed)
a)))

(primop + (call-closure f 1) (call-closure f 2)))

Here, Eclosed is a version of E in which every reference to a has been replaced by (%closure-ref .closure.73. 1).
(Of course, closure conversion also affects calls, lambdas, and other variable references within Eclosed.) The
call-closure construct applies the code component of a closure to the specified arguments, supplying the
closure itself as an implicit first argument.

New employee Bud Lojack, recalling a recent 6.821 problem set on partial evaluation, suggests inlining
and reducing the calls to f in the original example to yield:

(primop + [1/b]E [2/b]E)

Bud says, “Before my nifty transformation, the program had to allocate a closure for f. But the transformed
program doesn’t even have a definition for f, so no closure for f is ever allocated! So my transformation
reduces the space used by the program.”

a. [5 points] Name one way in which Bud’s transformation can increase the space used by the program.

Solution: If the expression E is large, then in the example above, the transformed expression is about
twice as large as the original expression. Thus the space consumed by the code of the program may
increase.

Seasoned hacker Chloe Jour has an idea for reducing the space used by the program. She transforms the
sample expression into:

(let ((f� (lambda (a b) E)))
(primop + (call f� a 1) (call f� a 2)))

Chloe has transformed the function f into the function f� , which has the same body as f, but takes the free
variable a of f as an explicit argument. She has changed each call of f into a call of f� , adding a as an extra
argument to the call. After closure conversion, this expression becomes:

(let ((f� (%closure (lambda (.closure.37. a b) Eclosed
�))))

(primop + (call-closure f� a 1) (call-closure f� a 2)))

She says, “Notice that the variable a is not free in f� , so the closure associated with f� is smaller than the
closure associated with f. Therefore my transformation reduces the amount of space allocated for closures
during execution of the program.”

Bud is excited by Chloe’s suggestion. He decides to transform every subexpression of his program of
the form:

11

(let ((Ifun (lambda (I1 . . . In) Efun)))
Elet)

into

(let ((Ifun
� (lambda (J1 . . . Jk I1 . . . In) Efun)))

Elet
�)

where:

• J1 . . . Jk are the free variables of (lambda (I1 . . . In) Efun), and

•	 Elet
� has been obtained from Elet by transforming each occurrence (call Ifun E1 . . . En) into

(call Ifun
� J1 . . . Jk E1 . . . En).

“Of course,” Bud notes, “it may be necessary to rename the bound variables of Elet in order to avoid capture
of the variables J1 . . . Jk .”

He shows his idea to Chloe, who has two objections (even after Bud fixes the potential name capture
problem). “First,” she says, “this transformation is not semantics-preserving in general.”

b. [6 points] Give an expression Elet such that Bud’s transformation does not preserve the semantics of
the following program. (Recall that the language is functional.)

(let ((f (lambda (b) (primop + a b))))
Elet)

Solution: Bud’s transformation does not preserve semantics when Ifun

position. For example:

(let ((f (lambda (b) (primop + a b))))
(call (if #t f f) 17))

After Bud’s transformation this becomes:

(let ((f� (lambda (a b) (primop + a b))))
(call (if #t f f) 17))

appears in a non-operator

Because the definition of f has been removed by the transformation, f has become a free variable.

An even simpler example is:

(let ((f (lambda (b) (primop + a b))))
f)

“Second,” says Chloe, “even when your transformation is semantics-preserving, it may actually increase the
total amount of memory allocated for closures during the evaluation of a program.”

c. [6 points] Give an expression Elet such that:

• The semantics of the following expression is preserved by Bud’s transformation:

(let ((f (lambda (b) (primop + a b))))
Elet)

12

• AND the transformed expression allocates more space for closures than the original expression.

(Recall that the language is functional.)

Solution: The problem is that while we may reduce the size of the closure for f, we can increase the
size of closures for functions that call f. For example:

(let ((f (lambda (b) (primop + a b))))
(list (lambda () (call f 1)) (lambda () (call f 2))))

Here a will only appear in the closure for f.

After Bud’s transformation, we have the following expression:

(let ((f (lambda (a b) (primop + a b))))
(list (lambda () (call f a 1)) (lambda () (call f a 2)))))

Now a no longer need appear in the closure for f, but it must appear in the closures of both anonymous
functions.

13

[

[
[

Appendix A: Standard Semantics of FLK!

v ∈ Value = Unit + Bool + Int + Sym + Pair + Procedure + Location

k ∈ Expcont = Value → Cmdcont
γ ∈	 Cmdcont = Store → Expressible

Expressible = (Value + Error)⊥
Error = Sym

p ∈ Procedure = Denotable → Expcont → Cmdcont
d ∈ Denotable = Value

e ∈ Environment = Identifier → Binding
β ∈ Binding = (Denotable + Unbound)⊥

Unbound = {unbound}
s ∈ Store = Location → Assignment
l ∈ Location = Nat

α ∈ Assignment = (Storable + Unassigned)⊥
σ ∈ Storable = Value

Unassigned = {unassigned}

top-level-cont : Expcont
= λv . λs . (Value 7→Expressible v)

error-cont : Error → Cmdcont
= λy . λs . (Error 7→Expressible y)

empty-env : Environment = λI . (Unbound 7→Binding unbound)

test-boolean : (Bool → Cmdcont) → Expcont
= λf . (λv .	 matching v

� (Bool 7→Value b)] (f b)
� else (error-cont non-boolean)
endmatching)

Similarly for:

test-procedure : (Procedure → Cmdcont) → Expcont

test-location : (Location → Cmdcont) → Expcont

etc.

ensure-bound : Binding → Expcont → Cmdcont

= λβ k .	 matching β

� (Denotable 7→Binding v)] (k v)
� (Unbound 7→Binding unbound)] (error-cont unbound-variable)
endmatching

Similarly for:

ensure-assigned : Assignment → Expcont → Cmdcont

Figure 1: Semantic algebras for standard semantics of strict CBV FLK!.

14

[

same-location? : Location → Location → Bool = λl1l2 . (l1 =Nat l2)
next-location : Location → Location = λl . (l +Nat 1)

empty-store : Store = λl . (Unassigned 7→Assignment unassigned)

fetch : Location → Store → Assignment = λls . (s l)

assign : Location → Storable → Store → Store
= λl1σ s . λl2 .	 if (same-location? l1 l2)

then (Storable 7→Assignment σ)
else (fetch l2 s)

fresh-loc : Store → Location = λs . (first-fresh s 0)

first-fresh : Store → Location → Location
= λsl .	 matching (fetch l s)

� (Unassigned 7→Assignment unassigned)] l
� else (first-fresh s (next-location l))
endmatching

lookup : Environment → Identifier → Binding = λeI . (e I)

Figure 2: Store helper functions for standard semantics of strict CBV FLK!.

15

[] []

[] []

[]

[] []

[] [] []

[]
[] [] []

[] [] []

[] []

[] [] []

[] []

[]
[] []

[] []

[[]

[

T L : Exp → Expressible

E : Exp → Environment → Expcont → Cmdcont

L : Lit → Value ; Defined as usual

T L [E] = E [E] empty-env top-level-cont empty-store

E [L] = λek . k L [L]

E [I] = λek . ensure-bound (lookup e I) k

E [(proc I E)] = λek . k (Procedure 7→Value (λdk � . E [E] [I : d]e k �))

E [(call E1 E2)] = λek . E [E1] e (test-procedure (λp . E [E2] e (λv . p v k)))

E [(if E1 E2 E3)] =
λek . E [E1] e (test-boolean (λb . if b then E [E2] e k else E [E3] e k))

E [(pair E1 E2)] = λek . E [E1] e (λv1 . E [E2] e (λv2 . k (Pair 7→Value 〈v1, v2〉)))

E [(cell E)] = λek . E [E] e (λvs . k	 (Location 7→Value (fresh-loc s))
(assign (fresh-loc s) v s))

E [(begin E1 E2)] = λek . E [E1] e (λvignore . E [E2] e k)

E [(primop cell-ref E)] = λek . E [E] e (test-location (λls . ensure-assigned (fetch l s) k s))

E [(primop cell-set! E1 E2)]
= λek . E [E1] e (test-location (λl . E [E2] e (λvs . k (Unit 7→Value unit) (assign l v s))))

E [(rec I E)] = λeks . let f = fixExpressible (λa . E [E] [I : (extract-value a)] e top-level-cont s)
matching f

� (Value 7→Expressible v)] E [E] [I : v] e k s

� else f

endmatching

extract-value : Expressible → Binding
= λa . matching a

� (Value 7→Expressible v)] (Denotable 7→Binding v)
� else ⊥Binding
endmatching

Figure 3: Valuation clauses for standard semantics of strict CBV FLK!.

16

Appendix B: Typing Rules for SCHEME/XSP
SCHEME/X Rules

` N : int [int]

` B : bool [bool]

` S : string [string]

` (symbol I) : sym [sym]

A[I:T] ` I : T [var]

∀i (A ` Ei : Ti)

A ` (begin E1 . . . En) : Tn
[begin]

A ` E : T
[the]

A ` (the T E) : T

A ` E1 : bool ; A ` E2 : T ; A ` E3 : T
[if]

A ` (if E1 E2 E3) : T

A[I1:T1, ..., In:Tn] ` EB : TB
[λ]

A ` (lambda ((I1 T1) . . . (In Tn)) EB) : (-> (T1 . . . Tn) TB)

A ` EP	 : (-> (T1 . . . Tn) TB)
∀i (A ` Ei : Ti)

[call]
A ` (EP E1 . . . En) : TB

∀i (A ` Ei : Ti)
A[I1:T1, ..., In:Tn] ` EB : TB

[let]
A ` (let ((I1 E1) . . . (In En)) EB) : TB

A� = A[I1:T1, ..., In:Tn]
∀i (A� ` Ei : Ti)
A� ` EB : TB [letrec]

A ` (letrec ((I1 T1 E1) . . . (In T1 En)) EB) : TB

A ` (∀i [Ti/Ii])Ebody : Tbody
[tlet]

A ` (tlet ((I1 T1) . . . (In Tn)) Ebody) : Tbody

∀i (A ` Ei : Ti)
[record]

A ` (record (I1 E1) . . . (In En)) : (recordof (I1 T1) . . . (In Tn))

A ` E : (recordof . . . (I T) . . .)
[select]

A ` (select I E) : T

A ` E : TE ; T = (oneof . . . (I TE) . . .)
[one]

A ` (one T I E) : T

A ` Edisc : (oneof (I1 T1) . . . (In Tn))
∀i . ∃j . ((Ii = Itagj) ∧ (A[Ivalj :Ti] ` Ej : T))

A ` (tagcase Edisc (Itag1 Ival1 E1) . . . (Itagn Ivaln En)) : T
[tagcase1]

A ` Edisc : (oneof (I1 T1) . . . (In Tn))
∀i | (∃j . (Ii = Itagj)) . A[Ivalj :Ti] ` Ej : T

A ` Edefault : T
A ` (tagcase Edisc (Itag1 Ival1 E1) . . . (Itagn Ivaln En) (else Edefault)) : T

[tagcase2]

17

[

[

Rules Introduced by SCHEME/XS to Handle Subtyping

T v T [reflexive-v]

T1 v T2 ; T2 v T3

T1 v T3
[transitive-v]

(T1 v T2)
(T2 v T1)

[≡]
T1 ≡ T2

∀i ∃j ((Ii = Jj) ∧ (Sj v Ti))
[recordof-v]

(recordof (J1 S1) . . .(Jm Sm)) v (recordof (I1 T1) . . .(In Tn))

∀j ∃i ((Jj = Ii) ∧ (Sj v Si))
[oneof-v]

(oneof (J1 S1) . . .(Jm Sm)) v (oneof (I1 T1) . . .(In Tn))

∀i (Ti v Si) ; Sbody v Tbody
[->-v]

(-> (S1 . . .Sn) Sbody) v (-> (T1 . . .Tn) Tbody)

∀T ([T/I1]T1 v [T/I2]T2)
[recof-v]

(recof I1 T1) v (recof I2 T2)

A ` Erator : (-> (T1 . . .Tn) Tbody)
∀i ((A ` Ei : Si) ∧ (Si v Ti))

[call-inclusion]
A ` (Erator E1 . . .En) : Tbody

A ` E : S
S v T

[the-inclusion]
A ` (the T E) : T

Rules Introduced by SCHEME/XSP to Handle Polymorphism

A ` E : T;

∀i (Ii 6∈ (FTV (Free-Ids [E]])A))

A ` (plambda (I1 . . . In) E) : (poly (I1 . . . In) T)
[pλ]

A ` E : (poly (I1 . . . In) TE)

A ` (proj E T1 . . . Tn) : (∀i [Ti/Ii]) TE
[project]

(∀i [Ii/Ji]) S v T, ∀i (Ii 6∈ Free-Ids [S]])

(poly (J1 . . . Jn) S) v (poly (I1 . . . In) T)
[poly-v]

recof Equivalence
(recof I T) ≡ [(recof I T)/I]T

18

Appendix C: Typing Rules for SCHEME/R

� #u : unit [unit]

� B : bool [bool]

� N : int [int]

� (symbol I) : sym [symbol]

[. . . , I:T, . . .] � I : T [var]

[. . . , I:(generic (I1 . . . In) Tbody), . . .] � I : (∀i [Ti/Ii])Tbody [genvar]

A � Etest : bool ; A � Econ : T ; A � Ealt : T
A � (if Etest Econ Ealt) : T

[if]

A[I1:T1, . . ., In:Tn] � Ebody : Tbody [λ]
A � (lambda (I1 . . . In) Ebody) : (-> (T1 . . . Tn) Tbody)

A � Erator : (-> (T1 . . . Tn) Tbody)
∀i . (A � Ei : Ti)

A � (Erator E1 . . . En) : Tbody
[apply]

∀i . (A � Ei : Ti)
A[I1:Gen(T1, A), . . ., In:Gen(Tn, A)] � Ebody : Tbody [let]

A � (let ((I1 E1) . . . (In En)) Ebody) : Tbody

∀i . (A[I1:T1, . . ., In:Tn] � Ei : Ti)
A[I1:Gen(T1, A), . . . In:Gen(Tn, A)] � Ebody : Tbody [letrec]

A � (letrec ((I1 E1) . . . (In En)) Ebody) : Tbody

∀i . (A � Ei : Ti) [record]
A � (record (I1 E1) . . . (In En)) : (recordof (I1 T1) . . . (In Tn))

A � Er : (recordof (I1 T1) . . . (In Tn))
A[I1:T1, . . ., In:Tn] � Eb : T

[with]
A � (with (I1 . . . In) Er Eb) : T

A � (letrec ((I1 E1) . . . (In En)) Ebody) : T
A � (program (define I1 E1) . . . (define In En) Ebody) : T

[program]

Gen(T, A) = (generic (I1 . . . In) T), where {Ii} = FTV (T) − FTE(A)

19

[]

[]

[]

[]

[]

[]

[]

[] []

[]
[]

[] []

[] []

[]

[] []

[]
[]

[]
[]

[]

[]

[] []

[]

[] []

[]

Appendix D: Type Reconstruction Algorithm for SCHEME/R

R [#u] A S = 〈unit, S〉
R [B] A S = 〈bool, S〉
R [N] A S = 〈int, S〉
R [(symbol I)] A S = 〈sym, S〉

R [I] A[I : T] S = 〈T, S〉
R [I] A[I : (generic (I1 . . . In) T)] S = 〈T [?vi/Ii], S〉 (?vi are new)

R [I] A S = fail (when I is unbound)

R [(if Et Ec Ea)] A S = let 〈Tt , St 〉 = R [Et]A S
in let St

� = U (Tt, bool, St)
in let 〈Tc, Sc〉 = R [Ec]A St

�

in let 〈Ta , Sa〉 = R [Ea]A Sc

in let S� = U (Tc, Ta, Sa)a

in 〈Ta, S� a 〉

R [(lambda (I1 . . . In) Eb)] A S =	 let 〈Tb, Sb〉 = R [Eb]A[Ii :?vi] S
in 〈(-> (?v1 . . . ?vn) Tb), Sb〉 (?vi are new)

R [(E0 E1 . . . En)] A S = let 〈T0, S0〉 = R [E0]A S
in . . .

let 〈Tn, Sn〉 = R [En]A Sn−1

in let Sf = U (T0, (-> (T1 . . . Tn) ?vf), Sn)
in 〈?vf , Sf 〉 (?vf is new)

R [(let ((I1 E1) . . . (In En)) Eb)] A S = let 〈T1, S1〉 = R [E1]A S
in . . .

let 〈Tn , Sn〉 = R [En]A Sn−1

in R [Eb]A[Ii : Rgen(Ti, A, Sn)]Sn

R [(letrec ((I1 E1) . . . (In En)) Eb)] A S =	 let A1 = A[Ii :?vi] (?vi are new)
in let 〈T1 , S1〉 = R [E1]A1 S

in . . .
let 〈Tn, Sn 〉 = R [En]A1 Sn−1

in let Sb = U (?vi, Ti, Sn)
in R [Eb]A[Ii : Rgen(Ti, A, Sb)] Sb

R [(record (I1 E1) . . . (In En))] A S = let 〈T1, S1〉 = R [E1]A S
in . . .

let 〈Tn, Sn〉 = R [En]A Sn−1

in 〈(recordof (I1 T1) . . . (In Tn)), Sn〉

R [(with (I1 . . . In) Er Eb)] A S = let 〈Tr , Sr 〉 = R [Er]A S
in let Sb = U (Tr , (recordof (I1 ?vi) . . . (In ?vn)), Sr) (?vi are new)

in R [Eb]A[Ii :?vi] Sb

Rgen(T, A, S) = Gen((S T), (subst-in-type-env S A))

20

