
 

  

 

  
  

  
  

 
  

 

 

In-class: bigger files for xv6 

In-class: bigger files for xv6 
In this assignment you'll increase the maximum size of an xv6 file. Currently xv6 files are limited to 140 sectors, or 
71,680 bytes. This limit comes from the fact that an xv6 inode contains 12 "direct" block numbers and one "singly-
indirect" block number, which refers to a block that holds up to 128 more block numbers, for a total of 12+128=140. 
You'll change the xv6 file system code to support a "doubly-indirect" block in each inode, containing 128 addresses of 
singly-indirect blocks, each of which can contain up to 128 addresses of data blocks. The result will be that a file will 
be able to consist of up to 16523 sectors (or about 8.5 megabytes). 

Preliminaries 

Modify your Makefile's CPUS definition so that it reads: 

CPUS := 1 

And add -snapshot to the definition of QEMUOPTS: 

QEMUOPTS = -hdb fs.img xv6.img -smp $(CPUS) -m 512 $(QEMUEXTRA) -snapshot 

The above two steps speed up qemu tremendously when xv6 creates large files. 

mkfs initializes the file system to have fewer than 1000 free data blocks, too few to show off the changes you'll make. 
Modify the code at the start of mkfs.c to read: 

int nblocks = 20985;

int nlog = LOGSIZE;

int ninodes = 200;

int size = 21029;
 

 Download big.c into your xv6 directory, add  it to  the UPROGS list, start up xv6, and run big. It creates as big a file as
xv6 will let it, and reports the resulting size. It should say 140 sectors.  

What to Look At 

The format of an on-disk inode is defined by struct dinode in fs.h. You're particularly interested in NDIRECT, 
NINDIRECT, MAXFILE, and the addrs[] element of struct dinode

The code that finds a file's data on disk is in bmap() in fs.c. Have a look at it and make sure you understand what it's 
doing. bmap() is called both when reading and writing a file. When writing, bmap() allocates new blocks as needed to 
hold file content, as well as allocating an indirect block if needed to hold block addresses. 

bmap() deals with two kinds of block numbers. The bn argument is a "logical block" -- a block number relative to the 
start of the file. The block numbers in ip->addrs[], and the argument to bread(), are disk block numbers. You can 
view bmap() as mapping a file's logical block numbers into disk block numbers. 

Your Job 

Modify bmap() so that it implements a doubly-indirect block, in addition to direct blocks and a singly-indirect block. 
You'll have to have only 11 direct blocks, rather than 12, to make room for your new doubly-indirect block; you're not 
allowed to change the size of an on-disk inode. The first 11 elements of ip->addrs[] should be direct blocks; the 12th 
should be a singly-indirect block (just like the current one); the 13th should be your new doubly-indirect block. 

You don't have to modify xv6 to handle deletion of files with doubly-indirect blocks. 
1

. A diagram of the standard xv6 inode is
available on the assignments page of this course.



  

  

   
  

 

 

 

In-class: bigger files for xv6 

If all goes well, big will now report that it can write 16523 sectors. It will take big a few dozen seconds to finish. 

Hints 

Make sure you understand bmap(). Write out a diagram of the relationships between ip->addrs[], the indirect block, 
the doubly-indirect block and the singly-indirect blocks it points to, and data blocks. Make sure you understand why 
adding a doubly-indirect block increases the maximum file size by 16,384 blocks (really 16383, since you have to 
decrease the number of direct blocks by one). 

Think about how you'll index the doubly-indirect block, and the indirect blocks it points to, with the logical block 
number. 

If you change the definition of NDIRECT, you'll probably have to change the size of addrs[] in struct inode in 
file.h. Make sure that struct inode and struct dinode have the same number of elements in their addrs[] arrays. 

If your file system gets into a bad state, perhaps by crashing, you may need to delete fs.img (do this from Unix, not 
xv6). 

Don't forget to brelse() each block that you bread(). 

You should allocate indirect blocks and doubly-indirect blocks only as needed, like the original bmap(). 

Submit: your modified fs.c 

2



MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	In-class: bigger files for xv6




