
Department of Electrical Engineering and Computer Science 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.828 Fall 2009 

Quiz I 

All problems are open-ended questions. In order to receive credit you must answer the question 
as precisely as possible. You have 80 minutes to finish this quiz. 

Write your name on this cover sheet AND at the bottom of each page of this booklet. 

Some questions may be harder than others. Read them all through first and attack them in the 
order that allows you to make the most progress. If you find a question ambiguous, be sure to 
write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t 
give you credit! 

THIS IS AN OPEN BOOK, OPEN NOTES EXAM. 

Please do not write in the boxes below.
 

I (xx/28) II (xx/20) III (xx/18) IV (xx/28) V (xx/6) Total (xx/100) 

Name:
 

1 



I Concurrency 

1. [8 points]: In xv6, the interrupt handler ideintr uses the lock idelock to ensure that it 
executes atomically. For example, if processor 0 runs iderw and processor 1 runs the interrupt han
dler ideintr, then the lock idelock ensures that their critical sections are appropriately ordered. 
Why is it important that acquire(&idelock) also turns off interrupts, in addition to marking the 
lock as acquired? 

2. [8 points]: bget (and thus bread) returns a locked block to its caller. Why is it important that 
xv6 locks blocks? Consider ialloc (line 3802). What could go wrong from line 3811 through 3817 
if the block returned by bread wasn’t locked? 

3. [8 points]: bget (line 3566) uses an integer flags stored in the returned block to indicate 
whether a thread is holding the lock on the block, instead of a spinlock. What could go wrong if we 
replaced the per-block B BUSY flag used by bget with a per-block spinlock? 

4. [4 points]: What ensures that setting flags in bget (line 3566) is an atomic operation? 

Name: 2 



II File systems
 

5. [8 points]: Ben wants to speed up the rate at which xv6 can write to the disk. He notices that 
iderw can have only one outstanding disk write per user process; xv6 puts the caller of iderw to 
sleep until the dirty bit is cleared by ideintr. Ben proposes to modify iderw to not call sleep, but 
instead return immediately. If a process issues multiple writes, all these writes will end up in the IDE 
queue, and the driver and disk controller can optimize performing a batch of writes. Ben makes all 
the required changes to xv6; he observes that write throughput improves for large files and that the 
system works correctly when there are no failures. Unfortunately, when Ben runs fsck after a system 
failure, he finds he cannot repair the disk into a consistent state anymore. What has gone wrong? 

6. [6 points]: Ben obsesses about performance and proposes a design to speed up directory listings. 
He stores the inode for each file in the struct dirent, a scheme called embedded inodes. When 
a user types “ls -l” to get a detailed directory listing, xv6 can avoid reading the inode for each file 
in the directory, because it is stored with the directory. Ben makes the change, and observes that xv6 
is faster for running “ls -l”. He also notices that hard links don’t work correctly any more. Give 
a sequence of shell commands that will work incorrectly with Ben’s embedded inodes and briefly 
describe what will go wrong. 

7. [6 points]: Suggest a solution to the link problem that achieves the performance benefits of 
embedded inodes without sacrificing correctness. 

Name: 3 



III Stacks
 

8. [8 points]: Suppose you wanted to change the system call interface in JOS so that, instead of 
returning the system call result in EAX, the kernel pushed the result on to the user space stack. Fill 
in the code below to implement this. For the purposes of this question, you can assume that the user 
stack pointer points to valid memory. 

static void 
trap_dispatch(struct Trapframe *tf) 
{ 

// ... 
if (tf->tf_trapno == T_SYSCALL) {
 

r = syscall(tf->tf_regs.reg_eax, ...);
 
// QUIZ: Your code here
 

} 
// ... 

} 

9. [8 points]: xv6’s initcode invokes the exec system call to replace itself with /init. 
exec allocates a stack for /init and carefully initializes it, starting from line 5080. Draw the stack 
it builds, giving the values that are on the stack and a brief explanation of each value. For pointers, 
simply draw an arrow or describe where they point to. 

10. [2 points]: While debugging xv6, Alyssa notices the value 0x7b70 in the ESP register. Which 
kernel thread is running on the processor? 

Name: 4 



IV Virtual Memory
 

Ben Bitdiddle wants to add a debugger for user programs to his implementation of JOS. He decides to write 
this debugger as a regular user program, and realizes that he’s going to need to add some system calls to 
support debugging. He starts with a system call that lets the debugger copy a page of memory between its 
own environment and any other environment. 

Ben first implements his new syscall, sys copy page, by switching to the source environment’s address 
space and copying the data into a scratch buffer, then switching to the destination environment’s address 
space and copying the data back out of the scratch buffer. Ben’s code is as follows: 

static char scratch[PGSIZE]; 

static int 
sys_copy_page(envid_t srcenvid, void *srcva, 

envid_t dstenvid, void *dstva) 
{ 

struct Env *srcenv, *dstenv; 
int r; 

if ((r = envid2env(srcenvid, &srcenv, 0)) < 0)
 
return r;
 

if ((r = envid2env(dstenvid, &dstenv, 0)) < 0)
 
return r;
 

if (srcenv != curenv && dstenv != curenv)
 
return -E_INVAL;
 

lcr3(srcenv->env_cr3);
 
memmove(scratch, srcva, PGSIZE);
 
lcr3(dstenv->env_cr3);
 
memmove(dstva, scratch, PGSIZE);
 

lcr3(curenv->env_cr3); 
return 0; 

} 

11. [8 points]: Louis Reasoner is troubled by Ben’s approach. He points out that Ben is copying 
data in to the scratch buffer while running in one environment’s address space, then expecting to read 
that data back after switching to a different address space. Ben assures Louis that this is alright. Why 
is it okay for Ben’s implementation to switch between address spaces like this? 

Name: 5 



12. [6 points]: Having addressed Louis’ concerns, Ben starts boasting about his understanding of 
address spaces and protection. Alyssa decides to put his kernel to the test and discovers that, not only 
can she crash Ben’s kernel by passing the virtual address of an unmapped page to sys copy page, 
but she can write a user program that writes to arbitrary kernel memory. How can Ben fix these two 
problems? 

13. [6 points]: Ben decides to change his strategy to copy data directly from the source page to 
the destination page without switching address spaces. His new implementation of sys copy page 
starts by finding the struct Page* of the source page and the physical address of the destination 
page. Why does this approach let Ben avoid switching address spaces in sys copy page? 

14. [8 points]: Ben uses a helper function to copy data between the source and destination pages 
that he looked up in his new sys copy page. Implement this function below. 

void 
copy_physical_page(physaddr_t dst, struct Page* src) 
{ 

} 

Name: 6 



V 6.828 

We’d like to hear your opinions about 6.828, so please answer the following questions. (Any answer, except 
no answer, will receive full credit.) 

15. [2 points]: This year we posted draft chapters that provide a commentary on xv6. Did you 
read them? If so, did you find the chapters useful? What should we do to improve them? 

16. [2 points]: What is the best aspect of 6.828? 

17. [2 points]: What is the worst aspect of 6.828? 

End of Quiz
 

Name: 7 



MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



