
6.828 2011 Lecture 11: Linux ext3 crash recovery

topic
 crash recovery

 crash may interrupt a multi-disk-write operation

 leave file system in an unuseable state

 most common solution: logging

 last lecture: xv6 log -- simple but slow

 today: Linux ext3 log -- fast

 theme: speed vs safety

 speed: don't write the disk

 safety: write the disk ASAP

example problem:
 appending to a file
 two writes:
 mark block non-free in bitmap
 add block # to inode addrs[] array

 we want atomicity: both or neither

 so we cannot do them one at a time

why logging?
 goal: atomic system calls w.r.t. crashes
 goal: fast recovery (no hour-long fsck)
 goal: speed of write-back cache for normal operations

review of xv6 logging
 [diagram: buffer cache, FS tree on disk, log on disk]
 log "header" block and data blocks
 each system call is a transaction
 begin_trans, commit_trans

 only one transaction at a time

 syscall writes in buffer cache

 each written block appended to log

 but NOT yet written to "home" location

 "write-ahead log"

 preserve old copy until sure we can commit

 on commit:
 write "done" and block #s to header block

 then write modified blocks to home locations

 then erase "done" from header blocks

 recovery:

 if log says "done":

 copy blocks from log to real locations on disk

what's wrong with xv6's logging? it is slow!
 only one transaction at a time
 two system calls might be modifying different parts of the FS
 synchronous write to on-disk log

 each write takes one disk rotation time

 commit takes a nother

 a file create/delete involves around 10 writes

 thus 100 ms per create/delete -- very slow!

1

 tiny update -> whole block write

 creating a file only dirties a few dozen bytes

 but produces many kilobytes of log writes

 synchronous writes to home locations after commit
 i.e. write-through, not write-back

 makes poor use of in-memory disk cache

how can we get both performance and safety?
 we'd like system calls to proceed at in-memory speeds
 using write-back disk cache
 i.e. have typical system call complete w/o actual disk writes

Linux's ext3 design
 case study of the details required to add logging to a file system
 Stephen Tweedie 2000 talk transcript "EXT3, Journaling Filesystem"
 ext3 adds a log to ext2, a previous xv6-like log-less file system
 has many modes, I'll start with "journaled data"
 log contains both metadata and file content blocks

ext3 structures:
 in-memory write-back block cache
 in-memory list of blocks to be logged, per-transaction
 on-disk FS
 on-disk circular log file

what's in the ext3 log?
 superblock: starting offset and starting seq #
 descriptor blocks: magic, seq, block #s
 data blocks (as described by descriptor)
 commit blocks: magic, seq

how does ext3 get good performance despite logging entire blocks?
 batches many syscalls per commit
 defers copying cache block to log until it commits log to disk
 hopes multiple sycalls modified same block
 thus many syscalls, but only one copy of block in log

 "write absorbtion"

sys call:
 h = start()
 get(h, block #)
 warn logging system we'll modify cached block

 added to list of blocks to be logged

 prevent writing block to disk until after xaction commits

 modify the blocks in the cache

 stop(h)

 guarantee: all or none

 stop() does *not* cause a commit

 notice that it's pretty easy to add log calls to existing code

ext3 transaction
 [circle set of cache blocks in this xaction]
 while "open", adds new syscall handles, and remembers their block #s
 only one open transaction at a time

2

 ext3 commits current transaction every few seconds (or fsync())

committing a transaction to disk
 open a new transaction, for subsequent syscalls
 mark transaction as done
 wait for in-progress syscalls to stop()
 (maybe it starts writing blocks, then waits, then writes again if needed)
 write descriptor to log on disk w/ list of block #s
 write each block from cache to log on disk
 wait for all log writes to finish
 append the commit record
 now cached blocks allowed to go to homes on disk (but not forced)

is log correct if concurrent syscalls?
 e.g. create of "a" and "b" in same directory
 inode lock prevents race when updating directory
 other stuff can be truly concurrent (touches different blocks in cache)
 transaction combines updates of both system calls

what if syscall B reads uncommited result of syscall A?
 A: echo hi > x
 B: ls > y

 could B commit before A, so that crash would reveal anomaly?

 case 1: both in same xaction -- ok, both or neither

 case 2: A in T1, B in T2 -- ok, A must commit first

 case 3: B in T1, A in T2

 could B see A's modification?
 ext3 must wait for all ops in prev xaction to finish
 before letting any in next start
 so that ops in old xaction don't read modifications of next xaction

T2 starts while T1 is committing to log on disk
 what if syscall in T2 wants to write block in prev xaction?
 can't be allowed to write buffer that T1 is writing to disk
 then new syscall's write would be part of T1

 crash after T1 commit, before T2, would expose update

 T2 gets a separate copy of the block to modify

 T1 holds onto old copy to write to log

 are there now *two* versions of the block in the buffer cache?

 no, only the new one is in the buffer cache, the old one isn't

 does old copy need to be written to FS on disk?

 no: T2 will write it

performance?
 create 100 small files in a directory
 would take xv6 over 10 seconds (many disk writes per syscall)
 repeated mods to same direntry, inode, bitmap blocks in cache
 write absorbtion...

 then one commit of a few metadata blocks plus 100 file blocks

 how long to do a commit?

 seq write of 100*4096 at 50 MB/sec: 10 ms

 wait for disk to say writes are on disk

 then write the commit record

 that wastes one revolution, another 10 ms

3

 modern disk interfaces can avoid wasted revolution

what if a crash?
 crash may interrupt writing last xaction to log on disk
 so disk may have a bunch of full xactions, then maybe one partial
 may also have written some of block cache to disk
 but only for fully committed xactions, not partial last one

how does recovery work
 1. find the start and end of the log

 log "superblock" at start of log file

 log superblock has start offset and seq# of first transaction

 scan until bad record or not the expected seq #

 go back to last commit record

 crash during commit -> last transaction ignored during recovery

 2. replay all blocks through last complete xaction, in log order

what if block after last valid log block looks like a log descriptor?
 perhaps left over from previous use of log? (seq...)
 perhaps some file data happens to look like a descriptor? (magic #...)

when can ext3 free a transaction's log space?
 after cached blocks have been written to FS on disk
 free == advance log superblock's start pointer/seq

what if block in T1 has been dirtied in cache by T2?
 can't write that block to FS on disk
 note ext3 only does copy-on-write while T1 is commiting
 after T1 commit, T2 dirties only block copy in cache

 so can't free T1 until T2 commits, so block is in log

 T2's logged block contains T1's changes

what if not enough free space in log for a syscall?
 suppose we start adding syscall's blocks to T2
 half way through, realize T2 won't fit on disk
 we cannot commit T2, since syscall not done
 can we free T1 to free up log space?
 maybe not, due to previous issue, T2 maybe dirtied a block in T1
 deadlock!

solution: reservations
 syscall pre-declares how many block of log space it might need
 block the sycall from starting until enough free space
 may need to commit open transaction, then free older transaction
 OK since reservations mean all started sys calls can complete + commit

ext3 not as immediately durable as xv6
 creat() returns -> maybe data is not on disk! crash will undo it.
 need fsync(fd) to force commit of current transaction, and wait
 would ext3 have good performance if commit after every sys call?
 would log many more blocks, no absorption

 10 ms per syscall, rather than 0 ms

 (Rethink the Sync addresses this problem)

4

no checksum in ext3 commit record
 disks usually have write caches and re-order writes, for performance
 sometimes hard to turn off (the disk lies)
 people often leave re-ordering enabled for speed, out of ignorance
 bad news if disk writes commit block before preceding stuff

 then recovery replays "descriptors" with random block #s!

 and writes them with random content!

ordered vs journaled
 journaling file content is slow, every data block written twice
 perhaps not needed to keep FS internally consistent
 can we just lazily write file content blocks?
 no:
 if metadata updated first, crash may leave file pointing

 to blocks with someone else's data

 ext3 ordered mode:
 write content block to disk before commiting inode w/ new block #
 thus won't see stale data if there's a crash
 most people use ext3 ordered mode

correctness challenges w/ ordered mode:
 A. rmdir, re-use block for file, ordered write of file,
 crash before rmdir or write committed
 now scribbled over the directory block
 fix: defer free of block until freeing operation forced to log on disk
 B. rmdir, commit, re-use block in file, ordered file write, commit,
 crash, replay rmdir

 file is left w/ directory content e.g. . and ..

 fix: revoke records, prevent log replay of a given block

final tidbit
 open a file, then unlink it
 unlink commits
 file is open, so unlink removes dir ent but doesn't free blocks
 crash
 nothing interesting in log to replay
 inode and blocks not on free list, also not reachably by any name
 will never be freed! oops

 solution: add inode to linked list starting from FS superblock

 commit that along with remove of dir ent

 recovery looks at that list, completes deletions

does ext3 fix the xv6 log performance problems?
 only one transaction at a time -- yes
 synchronous write to on-disk log -- yes, but 5-second window
 tiny update -> whole block write -- yes (indirectly)
 synchronous writes to home locations after commit -- yes

ext3 very successful
 but: no checksum -- ext4
 but: not efficient for applications that use fsync() -- next lecture

5

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec11_notes.txt

