
6.828 2012 Lecture 5: Interrupts, exceptions 

plan:
  entering the kernel (interrupts, system calls, &c)
  returning to user space 

where can the system be executing?
  diagram: u/k, user stacks, kernel stacks 

what are the transitions?
  u -> k: sys call / interrupt / exception
  k -> u: return from sys call / interrupt / exception
  k -> k: context switch
  k -> k: interrupt in kernel mode 

interrupts, exceptions, and system calls all use the same mechanism! 
we'll talk about context switch next week 

Q: why per-process kernel stack?
   what would go wrong if syscall used a single global stack? 

*** entering the kernel 

why do we need to take special care for user -> kernel?
  we want to maintain isolation
  we want transparency (esp for device interrupts) 

remember how x86 privilege levels work
  CPL in low 2 bits of CS
  CPL=0 -> kernel mode
  CPL=3 -> user mode 

what has to happen in a system call?
  save user state for future resume
  set up for execution in kernel (stack, CPL=0)
  choose a place to execute in kernel
  get at system call arguments 

let's look at what happens during a system call
  an sbrk() call in sh
 b *0xf48
 c  -- to mov $0xc, %eax -- 0xc = 12 = SYS_sbrk
 stepi  -- to int $0x40
  x/4x $esp  -- return PC, sbrk argument, ...
 stepi  -- to vector64, pushl $0x40 

where are we? how did we get here? 

the INT instruction jumps into the kernel 

where does INT jump to?
  the $0x40 is a vector number
  a vector is an allowed entry point 

1



  x86 has 256 vectors, for different uses (devices, exceptions, &c)

  kernel knows why interrupt occured by looking at vector #

  vector is index of a descriptor in the "IDT"

  IDTR register has IDT's base address

  each IDT descriptor has seg selector, offset in segment

    see handout
    for xv6, seg selector always SEG_KCODE, offset is address of vector fn
    IDT seg selector will be the code segment
    so IDT seg selector determines CPL
  print idt[0x40] 

INT instruction steps (similar for interrupts and exceptions):
  fetch vector's descriptor from IDT
  if seg selector's PL < CPL:
    it's a cross-ring interrupt

    save ESP and SS in a CPU-internal register

    load SS and ESP from TSS

    push user SS

    push user ESP

  push user EFLAGS

  push user CS

  push user EIP

  clear some EFLAGS bits (XXX what?)

  set CS and EIP from IDT descriptor's segment selector and offset
 

Q: does INT really need all those steps?
   e.g. why does it save SS and ESP? 

what's the current CPL?
  print $cs
  why can't user code abuse INT to get privilege? 

xv6 details:
 vectors.S
  tvinit() (trap.c) sets up IDT during boot
  switchuvm() (vm.c) sets ss and esp in TSS 

x/6x $esp
 Q: which stack?
  what's on it?

    user registers: fake error, eip, cs, eflags, esp, ss
 

x/3i vector64
  why push 0x40?
  why not have IDT point directly to alltraps? 

stepi to pushl %esp (trapasm.S, just before call trap) 

x/19x $esp
  these are all saved *user* registers
  compare with struct trapframe, x86.h
 ss       // hw pushes these:
 esp
 eflags 

2



      

 cs

 eip

 (error)

 trapno   // vector pushes this

 ds       // alltraps pushes these:

 es

 fs

 gs

 eax

 ecx

 edx

 ebx

 xxesp

 ebp

 esi

 edi
 

Q: where does trap(tf) argument come from? 

Q: where did tf->trapno come from? 

*** system call handling 

if T_SYSCALL (0x40), trap() calls syscall()
  syscall() gets system call number from tf->eax

 Q: where was %eax set?
 Q: where are the system call arguments?
  sys_sbrk() fetches system call argument from user stack
    pushed by user-level C call to sbrk()
    via tf->esp

 argint() 

syscall() puts sys_sbrk() return value in tf->eax 

syscall() returns to trap()
  trap() returns to alltraps (trapasm.S) 

*** kernel -> user 

use "finish" to return to trapasm.S 
si (until popal) 
x/19x $esp 

Q: what has changed in the trapframe? 

si until iret 
x/5x $esp
  eip cs eflags esp ss 

si (into user space) 

Q: where are we now? 
Q: what are we returning from? 

3



x/4x $esp 
Q: what stack is that? 
Q: what's on the stack? 

*** other points about interrupts/exceptions 

Faults, like page fault and divide by zero, work much the same, but to 
different vectors. 

The kernel handles some exceptions internally, e.g. lazy-allocate page 
fault. 

The program can arrange to get control after some exception -- via 
UNIX signal handlers. 

Faults, interrupts, &c can occur while the kernel is running
  old CPL == new CPL
  h/w doesn't switch stacks
  h/w doesn't push old esp/ss
  so trapframe is a bit different
  you can tell: look at old CPL in low bits of tf->cs 

device interrupts
  hardware generates them
  examples: timer, disk, console
  vector per device 

example device: timer
  trap.c, look for IRQ_TIMER
  add a cprintf, you'll see it's called a lot 

*** fork 

a process's kernel stack is originally set up in fork() 

we want to know setup of child
  user stack, registers, EIP
  kernel stack, registers, EIP 

struct proc, in proc.h
  each has to be initialized in child 

allocproc()
  kstack allocation
  space for trapframe
  *sp = trapret
  space for context
  context->eip = forkret 

fork()
  copyuvm() -- copy user stack, instructions, heap
  *np->tf = *proc->tf -- copy user registers
  np->tf->eax = 0  -- child return value 

4



 

MIT OpenCourseWare
http://ocw.mit.edu 

6.828 Operating System Engineering 
Fall 2012 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec5_notes.txt




