

-*- mode: org -*
#+STARTUP: indent

how to run connect to qemu from gdb
how to pass a break point multiple times (c n)

* <2011-10-03 Mon>: processes, threads, and scheduling

* Plan:
 process
 threads
 scheduling

* Process:
** abstract virtual machine
provides the illusion to application of a dedicated computer, but an abstract one
convenient for application developer
one process cannot effect another accidentally
** API:
fork
exec
exit
wait
kill
sbrk
getpid

* Problem: more processes than processors
** xv6 picture:
1 user thread and 1 kernel thread per process
1 scheduler thread per processor
n processors
** terms
*** a process: address space plus one or more threads
*** a thread: thread of execution
kernel thread: thread running in kernel mode
user thread: thread running in user mode
*** thread of execution:
an abstraction that contains enough state of a running program that it can be
stopped and resumed
xv6 API: yield, swtch

* Goals for solution:
- Switching transparent to user threads
- User thread cannot hog a processor	 (kernel thread assumed to be correct, so
 not a goal)

* Overview of switch between two user threads
** user threads
- User -> kernel transition
- kernel -> kernel switch
- kernel -> User transition
** guaranteed U->K transitions

1

- timing interrupt every 100 ms
- switches to different kernel thread on yield
- the different kernel thread returns to a different user thread

* Challenges in implementing:

** Opaque code ("You are not supposed to understand this")

** Concurrency (several processors switching between threads)

** Terminating a thread, always need a valid stack

* Xv6 design

One scheduler thread per processor

Scheduling organized as co-routines

Scheduler thread performs cleanup

* Code

** Forced switching:

*** demo of two processes who don't invoke system calls

**** look at process states

*** clock interrupt

lapic.c for SMP

timer.c for uniprocessor

*** walk through what xv6 does to guarantee switching

breakpoint in trap

get hog running (c 100)

look at tf, in particular tf->eip

look at tf->trapno (timer interrupt), gets to yield

get to swtch, look at contexts (p /x *cpus[0]->scheduler)

look at eip before return from swtch (we switched to scheduler thread)

scheduler: switches to selected thread (set b proc.c:278)

will return user space

what is the scheduling policy?

will the thread that called yield run immediately again?

** Concurrency

 - plock held across swtch; why?

 yield: p is set runnable, p must complete switch before another scheduler choses p

 - hard to reason about; coroutine style helps

 - can two schedulers select the same runnable process?

 - why does scheduler release after loop, and re-acquire it immediately? (run with interrupts!)

** Thread clean up

 - let's look at kill: can we clean up killed process? (no: it might be running,

 holding locks etc.)

 before returning to user space: process kills itself by calling exit

 - let's look at exit; can thread delete its stack?	 (no: it has to switch off

 it!)

 - wait() does the cleanup

2

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec7_notes.txt

