
Congestion Manager

Nick Feamster
M.I.T. Laboratory for Computer Science

6.829 Computer Networks
October 24, 2001

 Outline

 Motivation (problem CM solves?)
 Sharing info on concurrent flows
 Enable application adaptation
 CM Architecture
 The CM API (and tradeoffs)
 More about the CM Framwork...
 Implementation
 Limitations

 Motivation

 End-systems supply much functionality
 Reliability
 In-order delivery
 Demultiplexing
 Message boundaries
 Connection abstraction
 Congestion control

 Of these, congestion control is the only functionality required
 by all communications applications!

 Problem...

 "Multimedia Transmissions Drive Net Toward Gridlock"
 Sara Robinson, NYT, 8/23/99

 Today’s End-System Architecture

 TCP’s AIMD solves the problem, right?

Telephony

Today’s Internet

Yesterday’s
Protocols

HTTP

Streaming

Interactive Games
...

 Doesn’t enable application adaptation
 Streaming (e.g., audio, video, etc.)

 Doesn’t handle concurrent flows
 e.g., WWW
 any application that would benefit from shared information

 Adaptation

Transport

Network

Link

Application

 Little information is transferred across layers to

applications
 Increasing number of non-TCP applications

 CM exports a simple adaptation API

 Concurrent Flows: Web of Troubles

 Web browsers perform concurrent downloads
 Simultaneous dowloading for embedded images
 Proxies can multiplex requests
 Aggressive downloading => Higher Throughput

 But...
 Why slow start each connection?
 Loss information is not shared between flows
 More connections = More bandwidth! (fair?)
 Concurrent streams are competing, should be cooperating!

 What can we do to ensure fair behavior and yet
 gain some of the benefits of concurrent downloads?

 CM abstracts all congestion-related information into one place.

 The Big Picture

A
P
I

CM Protocol

RTSP Audio

Transport
Instances

Manager

TCP1 TCP2 UDP

RTP Video

Congestion

HTTP FTP

Applications

IP

 CM performs all congestion related tasks for macroflow.
 Applications adapt using the CM-exported API.
 Frees transport/app protocols from reimplementing CC.

 Questions

 What to send?
 API
 When to send?
 Congestion controller
 Who should send?
 Scheduler
 What’s the network state?
 Application feedback/CM Probing
 OR...can avoid modifying receiver stack if applications provide

feedback.

 CM Architecture

Congestion
Controller

Scheduler

Application Application

Hints Dispatch

Responder

Detector
CongestionProber

SENDER RECEIVER

 CM Architecture

feedback

API Callbacks
Data

Sender Receiver

Controller

CM

Congestion Scheduler

Flow Integration Per−Flow Scheduling

 Separate congestion management from transport.
 Multiple applications and protocols can share congestion info.
 Separate congestion control and scheduling.

 Macroflows

 All streams on a "macroflow" share congestion state

 What is a "macroflow"? Streams grouped by:
 Destination address?
 Address and port?
 End host application?

 Let the application group flows into macroflows that

share state

 Quickly detecting good macroflows...

 The CM API

 State Management
 cm_open() -- returns stream ID
 cm_close() -- closes session
 cm_mtu() -- get path MTU for flow

 Data transmission options
 Buffered send
 Request/callback
 Rate callback

 Application Notification
 cm_update() -- get new rate
 cm_notify() -- tell CM about any losses

 Queries: cm_query()

 Different applications, different needs

 Buffered Send
 Data-driven applications (send a single file and exit)

 Request/Callback
 TCP (retransmission decision)
 Asynchronous apps, last minute adaptation...
 Video streaming apps, last minute decisions, etc.

 Rate Callback
 Synchronous event-driven apps (rate-clocked)

 Buffering reduces application control,
 limits the application to do "last minute adaptation"...

 Request/Callback API

− Request Transmission

Application

Socket

IP

TCP

CM

Application

Socket

IP

TCP − Retransmissions
− Flow Control
− Congestion Control

Standard TCP TCP/CM

− Calls cm_notify

− Connection Handling
−Receive send callback
− Update with losses

 Application achieves TCP-like behavior,

 but has control over what to send .

 Asynchronous Transmission for Everyone?

 Request API works for asynchronous sources --
 asyncronous() {
 wait for (event) {
 get_data();
 send();
 }

 What about synchronous sources? (e.g., audio)
 do_every_10_ms () {
 get_data();
 send();
 }

 Synchronous Transmission

 Asynchronous callbacks are not appropriate for

applications that must transmit at a constant rate (e.g.,
audio servers)

 A more appropriate API:
 Register info on RTT, rate thresholds
 cmapp_update(newrate, new_rtt, new_rttdev)

 Application adjusts sending interval, packet size, etc.

 Congestion Controller

 Obtains feedback about past transmissions

 Adjusts the aggregate transmission rate between sender

and receiver

 Decides when a macroflow should send

 Modular: Congestion control algorithms on

per-macroflow basis

 Example: Layered Video

MPEG Server

loss rates/
RTTs

RTP/RTCP

MPEG Client

RTP/RTCP

callbacks

CM

data loss/RTT/requests data loss/RTT/requests

RTSP

Internet

SR−RTP

 Track loss rates and RTT using RTP/RTCP, report to CM

 Callbacks from CM control sending rates

 Congestion Control Layered Video

 Goal: Smooth transmission rate => constant quality video

 Scheduler

 Decides which flow on a macroflow should send

 Hints from application/receiver to prioritize flows

 Plug in other scheduling algorithms...

 Feedback

 Required for stable end-to-end congestion control

 Probing Protocol
 optional, can use application feedback instead

 Application
 cm_update()
 no changes to receiver stack

 Frequency?

 Probing Protocol

 Sender periodically sends out probes

 Receiver responds with
 Last received sequence number (i.e., this one)
 SN of last probe received
 Bytes in between

 Reordering...?
 Reverse window choices later.

 Lost probes...?
 Exponential aging
 Minimim RTT fpr half-life (why stable?)

 Application Feedback

10 2 3 4 5 6 7 8 9
0

10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9
1 2

0 1
3

V P RC Payload Type=RR Length

SSRC of packet sender (Receiver ID)

fraction lost cumulative number of lost packets

extended highest sequence number received

Timestamp Echo (LSR)

Processing Time (DLSR)

Window Size (kB) Padding

ADU Sequence Number

ADU Fragment Length (bytes)

ADU Offet (bytes)

SSRC_1 (SSRC of first source)

Interarrival Jitter

 CM Implementation

Stream requests, updates
cmapp_send()
cmapp_update()

cm_notify()

User−level library
implements API

Congestion
Controller

Scheduler

libcm

TCP UDP−CC

IP

kernel API

Control socket for callbacksSystem calls (ioctl)

App

 IP notifies CM about data transfer on output

 Related Work: HTTP/TCP Interactions

 Connection Establishment
 3-Way Handshake, Timeouts (what’s the RTO?)
 "Stop and Reload" ...manual SYN retransmit

 Persistent Connections
 Good: Can avoid slow-start, 3-way handshake, etc.
 Bad: What’s the congestion window?
 Solutions: pacing, slowly decrease window, etc.

 Nagle’s Algorithm: limits number of small packets sent
 Good: Interactive apps (e.g., ssh) send fewer small packets.
 Bad: HTTP response delayed if not aligned on packet boundaries.

 Limitations?

 Buggy/malicious applications
 Incorrect loss, RTT reports
 Application "hogging" bandwidth of macroflow

 Aging of congestion information
 Detriment of low feedback frequency

 Macroflow granularity
 Current research is addressing this...

 Multicast applications

 Conclusion

Congestion
Controller

Scheduler

Application Application

Hints Dispatch

Responder

Detector
CongestionProber

SENDER RECEIVER

 Conclusion

 The Congestion Manager Architecture:
 Separates transport protocol from congestion control algorithms
 Gives application control over what data to send

 Callback-based architecture allows last minute

adaptation by adaptation.

 Applications can benefit from sharing information about

congestion.

 Buffering reduces application control,
 limits the application to do "last minute adaptation"...

 Congestion Controller

 May want to use something besides TCP’s AIMD

 What applications may be harmed by high oscillations?

 CM allows separation of congestion control algorithms

from transport!

 Why Sockets?

 What about other kernel to user communication:

 Signals
 Conflict with other applications
 Receiving a signal is expensive

 System Calls
 Requires threading support...

 Semaphores
 Most network apps use sockets instead (??)

 Application-Specific Congestion Control

t

w(t) AIMD

SQRT

 Applications can employ congestion control algorithms

that are more amenable to the task.
 ...and can experiment with different types of algorithms with relative ease.

