Lecture 9
 10/8/09

Query Optimization

Lab 2 due next Thursday.
M pages memory
S and R, with ISI IRI pages respectively; $I S I>I R$
M > sqrt(ISI)

External Sort Merge

split ISI and IRI into memory sized runs
sort each
merge all runs simultaneously
total I/O 3 IRI + ISI
(read, write, read)
"Simple" hash
given hash function $h(x)$, split $h(x)$ values in N ranges
$\mathrm{N}=$ ceiling(IRI/M)
for $(i=1 \ldots N)$ for r in R
if $h ®$ in range i, put in hash table Hr o.w. write out for s in S if $h(s)$ in range i, lookup in Hr o.w. write out
total I/O
$N(I R I+I S I)$

Grace hash:

for each of N partitions, allocate one page per partition hash r into partitions, flushing pages as they fill
hash s into partitions, flushing pages as they fill
for each partition p
build a hash table Hr on r tuples in p
hash s, lookup on Hr
example:
$R=1,4,3,6,9,14,1,7,11$
$S=2,3,7,12,9,8,4,15,6$
$h(x)=x \bmod 3$
R1 = 369
$\mathrm{R} 2=1417$
$R 3=1411$

S1 = 3129156
S2 $=74$
S3 = 28

Now, join R1 with S1, R2 with S2, R3 with S3

Note -- need 1 page of memory per partition. Do we have enough memory?
We have IRI / M partitions
$M \geq \operatorname{sqrt}(|R|)$
worst case
IRI / sqrt(IRI) = sqrt(IRI) partitions

Need sqrt(IRI) pages of memory b/c we need at least one page per partition as we write out (note that simple hash doesn't have this requirement)

I/O:
read R+S (seq)
write R+S (semi-random)
read $R+S$ (seq)
also 3(IRI+|SI) I/OS
What's hard about this?
When does grace outperform simple?
(When there are many partitions, since we avoid the cost of re-reading tuples from disk in building partitions)
When does simple outperform grace?
(When there are few partitions, since grace re-reads hash tables from disk)
So what does Hybrid do?
$M=\operatorname{sqrt}(\mathrm{IRI})+E$
Make first partition of size E, do it on the fly (as in simple)
Do remaining partitions as in grace.

Why does grace/hybrid outperform sort-merge?

CPU Costs!
I/O costs are comparable
690 / 1000 seconds in sort merge are due to the costs of sorting
17.4 in the case of CPU for grace/hybrid!

Will this still be true today?
(Yes)

Selinger

Famous paper. Pat Selinger was one of the early System R researchers; still active today.
Lays the foundation for modern query optimization. Some things are weak but have since been improved upon.

Idea behind query optimization:
(Find query plan of minimum cost)
How to do this?
(Need a way to measure cost of a plan (a cost model))

single table operations

how do i compute the cost of a particular predicate?
compute it's "selectivity" - fraction F of tuples it passes
how does selinger define these? -- based on type of predicate and available statistics
what statistics does system R keep?

- relation cardinalities NCARD
- \# pages relation occupies TCARD
- keys in index ICARD
- pages occupied by index NINDX

Estimating selectivity F:

```
col = val
    F=1/ICARD()
    F=1/10 (where does this come from?)
```

col > val
high key - value / high key - low key
1/3 o.w.
col1 = col2 (key-foreign key)
1/MAX(ICARD(col1, col2))
1/10 o.w.
ex: suppose emp has 10000 records, dept as 1000 records
total records is 10000 * 1000, selectivity is $1 / 10000$, so 1000 tuples expected to pass join
note that selectivity is defined relative to size of cross product for joins!
p1 and p2
F1 * F2
p1 or p2

$$
1-(1-F 1)^{*}(1-F 2)
$$

then, compute access cost for scanning the relation.
how is this defined?
(in terms of number of pages read)
equal predicate with unique index: 1 [btree lookup] +1 [heapfile lookup] +W
(W is CPU cost per predicate eval in terms of fraction of a time to read a page)
range scan:
clustered index, boolean factors: F(preds) * (NINDX + TCARD) + W*(tuples read)
unclustered index, boolean factors: F(preds) * (NINDX + NCARD) + W*(tuples read)
unless all pages fit in buffer -- why?
seq (segment) scan: TCARD $+\mathrm{W}^{*}($ NCARD $)$
Is an index always better than a segment scan? (no)

multi-table operations

how do i compute the cost of a particular join?
algorithms:
NL(A,B,pred)
C-outer(A) + NCARD(outer) * C-inner(B)
Note that inner is always a relation; cost to access depends on access methods for B; e.g., $w /$ index $-1+1+$ W
w/out index -- TCARD(B) $+W^{*}$ NCARD (B)
C-outer is cost of subtree under outer
How to estimate \# NCARD(outer)? product of F factors of children, cardinalities of children example:

Image by MIT OpenCourseWare.

Merge_Join_x(P,A,B), equality pred
C-outer + C-inner + sort cost
(Saw cost models for these last time)
At time of paper, didn't believe hashing was a good idea

Overall plan cost is just sum of costs of all access methods and join operators
Then, need a way to enumerate plans

Iterate over plans, pick one of minimum cost

Problem:

Huge number of plans. Example:
suppose I am joining three relations, $\mathrm{A}, \mathrm{B}, \mathrm{C}$
Can order them as:
(AB)C
A(BC)
(AC)B
A(CB)
(BA)C
B(AC)
(BC)A
$B(A C)$
(CA)B
C(AB)
(CB)A
C(BA)
Is $C(A B)$ different from (CA)B?
Is $(A B) C$ different from $C(A B)$?
yes, inner vs. outer
$n!$ strings * \# of parenthetizations
how many parenthetizations are there?

```
ABCD --> (AB)CD A(BC)D AB(CD) 3
    XCD AXD ABX *2
                                ===
                        6 --> (n-1)!
==> n! * (n-1)!
```

6 * $2==12$ for 3 relations

Ok, so what does Selinger do?
Push down selections and projections to leaves
Now left with a bunch of joins to order.
Selinger simplifies using 2 heuristics? What are they?

- only left deep; e.g., $A B C D=>(((A B) C) D)$ show
- ignore cross products
e.g., if A and B don't have a join predicate, doing consider joining them
still n ! orderings. can we just enumerate all of them?

10! -- 3million
20! -- 2.4 * 10 ^ 18
so how do we get around this?

Estimate cost by dynamic programming:
idea: if I compute join (ABC)DE -- I can find the best way to combine ABC and then consider all the ways to combine that with DE.
i can remember the best way to compute (ABC), and then I don't have to re-evaluate it. best way to do ABC may be ACB, BCA, etc -- doesn't matter for purposes of this decision.
algorithm: compute optimal way to generate every sub-join of size 1 , size $2, \ldots \mathrm{n}$ (in that order).

```
R<--- set of relations to join
for \partial in {1...IRI}:
        for S in {all length \partial subsets of R}:
            optjoin(S) = a join (S-a), where a is the single relation that minimizes:
                cost(optjoin(S-a)) +
                min cost to join (S-a) to a +
                min. access cost for a
```

example: ABCD
only look at NL join for this example
A = best way to access A (e.g., sequential scan, or predicate pushdown into index...)
B=" " " "B
C=" " " "C
D=" " " "D

```
{A,B} = AB or BA
{A,C} = AC or CA
{B,C}=BC or CB
{A,D}
{B,D}
{C,D}
```

$\{A, B, C\}=$ remove A - compare $A(\{B, C\})$ to $(\{B, C\}) A$
remove B - compare $(\{A, C\}) B$ to $B(\{A, C\})$
remove C - compare $C(\{A, B\})$ to $(\{A, B\}) C$
\{A,C,D\}
\{A,B,D\}
$\{B, C, D\}$

```
{A,B,C,D} = remove A - compare A({B,C,D}) to ({B,C,D})A
    .... remove B
        remove C
        remove D
```

Complexity:
number of subsets of size 1^{*} work per subset = W+
number of subsets of size 2 * $\mathrm{W}+$
number of subsets of size $\mathrm{n}^{*} \mathrm{~W}+$
$\mathrm{n}+\mathrm{n}+\mathrm{n} \ldots \mathrm{n}$
123 n
number of subsets of set of size $n=$ power set of $n=2^{\wedge} n$
(string of length $n, 0$ if element is in, 1 if it is out; clearly, $2^{\wedge} n$ such strings)
(reduced an n ! problem to a $2^{\wedge} n$ problem)
what's W? (n)
so actual cost is: $2^{\wedge} n * n$
So what's the deal with sort orders? Why do we keep interesting sort orders?
Selinger says: although there may be a 'best' way to compute ABC, there may also be ways that produce interesting orderings -- e.g., that make later joins cheaper or that avoid final sorts.

So we need to keep best way to compute ABC for different possible join orders.
so we multiply by " k " -- the number of interesting orders
how are things different in the real world?

- real optimizers consider bushy plans (why?)

A
D
B
C E

- selectivity estimation is much more complicated than selinger says and is very important.

how does selinger estimate the size of a join?

- selinger just uses rough heuristics for equality and range predicates.
- what can go wrong?
consider ABCD
suppose sel $(A$ join $B)=1$
everything else is .1
If I don't leave A join B until last, I'm off by a factor of 10
- how can we do a better job?
(multi-d) histograms, sampling, etc.
example: 1d hist

Image by MIT OpenCourseWare.
example: 2d hist

Image by MIT OpenCourseWare.

MIT OpenCourseWare
http://ocw.mit.edu

6.830 / 6.814 Database Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

